Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 79-90
Automation of surface karst assessment using Sentinel-2 satellite imagery
1 Perm State University, Perm, Russia
Accepted: 28.11.2022
DOI: 10.21046/2070-7401-2022-19-6-79-90
The article demonstrates the advantages of a detailed analysis of remote sensing data for karstological purposes using the Google Earth Engine cloud platform and geographic information systems. The karst area within the Kishert gypsum and carbonate gypsum karst development area in Perm Krai was chosen as the study area. The article demonstrates the application of space imagery classification with learning. The purpose of imagery classification is automatic zoning of the territory by type of land cover: meadows and croplands, forests, urbanized areas. Within meadows and croplands calculation of vegetation indices has been carried out in order to delineate potentially karst hazardous areas. The idea of using vegetation indices in assessing surface karst is based on the geobotanical properties of sinkholes in the study area. The relatively high values of vegetation indices within sinkholes reflect the fact that the sides, slopes and bottoms of sinkholes are covered with shrubby, moisture-loving vegetation. This vegetation is interpreted successfully by vegetation indices calculation under these conditions. Based on the spatial analysis of the distribution of potentially hazardous areas, a predictive model, zoning of the study area according to the degree of karst hazard, was built. As a result of the quantitative assessment of the methodology applicability, we can conclude that the areas of coincidence of all four vegetation indices very accurately characterize the karst forms distribution, so the comprehensive research of the vegetation indices is very informative in assessing of the surface karst distribution.
Keywords: remote sensing data, Google Earth Engine, vegetation indices, geotechnical surveys, surface karst, karst massif, karst hazard
Full textReferences:
- Gorbunova K. A., Andreichuk V. N., Kostarev V. P., Maksimovich N. G., Karst i peshchery Permskoi oblasti (Karst and caves of the Perm region), Perm: PSU, 1992, 200 p. (in Russian).
- Zolotarev D. R., The Results of Lineament Analysis on the Karst Areas of Perm Territory, Sovremennye problemy nauki i obrazovaniya, 2012, No. 5, 9 p. (in Russian), https://science-education.ru/ru/article/view?id=7233.
- Zolotarev D. R., Kataev V. N., Lineament tectonic influence on development of karst processes at the local level, Georisk, 2013, No. 1, pp. 34–43 (in Russian).
- Zolotarev D. R., Kataev V. N., Shcherbakov S. V., Correlation between karst and lineaments within the Polaznensky local uplift, Geologiya i poleznye iskopaemye Zapadnogo Urala (Geology and minerals of the Western Urals), Proc. Scientific-Practical Conf. Dedicated to the 80th Anniversary of Faculty of Geology and the 95th Anniversary of Perm University, Perm, 2011, pp. 153–155 (in Russian).
- Polyakova E. V., Kutinov Yu. G., Mineev A. L., Chistova Z. B., Geoecological assessment of the probability of activation of karst processes based on digital relief modeling, Analiz, prognoz i upravlenie prirodnymi riskami s uchetom global’nogo izmeneniya klimata “Georisk-2018” (Analysis, forecast and management of natural risks taking into account global climate change “Georisk-2018”), Proc. 10th Intern. Scientific-Practical Conf., Moscow, 2018, pp. 221–225 (in Russian).
- Polyakova E. V., Kutinov Yu. G., Mineev A. L., Chistova Z. B., Belenovich T. Ya., Using the ASTER GDEM v.2 global digital elevation model to identify areas of possible activation of karst processes in the Arkhangelsk region, Uchenye zapiski Kazanskogo universiteta, Ser. “Estestvennye Nauki”, 2021, Vol. 163, No. 2, pp. 302–319 (in Russian), DOI: 10.26907/2542-064X.2021.2.302-319.
- Alexander S. C., Rahimi M., Larson E., Bomberger C., Greenwaldt B., Alexander Jr. E. C., Combining LiDAR, aerial photography and pictometric tools for karst features database management, NCKRI Symp. 2, Proc. 13th Multidisciplinary Conf. Sinkholes and the Engineering and Environmental Impacts of Karst, Land L., Doctor D. H., Stephenson J. B. (eds.), Carlsbad, New Mexico, 2013, p. 441–448.
- Bruning J., Gierke J., Maclean A., An Approach to Lineament Analysis for Groundwater Exploration in Nicaragua, Photogrammetric Engineering and Remote Sensing, 2011, No. 77(5), pp. 509–519, https://doi.org/10.14358/PERS.77.5.509.
- Crippen R. E., Calculating the Vegetation Index Faster, Remote Sensing of Environment, 1990, Vol. 34, pp. 71–73, DOI: 10.1016/0034-4257(90)90085-Z.
- de Carvalho Jr. O. A., Guimarães R. F., Montgomery D. R., Gillespie A. R., Gomes R. A.T., de Souza Martins É., Silva N. C., Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital elevation models in the Bambuí Group, Brazil, Remote Sensing, 2014, Vol. 6, pp. 330–351, DOI: 10.3390/rs6010330.
- Gao B.-C., NDWI — A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space, Remote Sensing of Environment, 1996, No. 58(3), pp. 257–266, https://doi.org/10.1016/S0034-4257(96)00067-3.
- Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R., Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sensing of Environment, 2017, Vol. 202, pp. 18–27, DOI: 10.1016/j.rse.2017.06.031.
- Hofierkaa J., Gallaya M., Bandurab P., Šašaka J., Identification of karst sinkholes in a forested karst landscape using airborne laser scanning data and water flow analysis, Geomorphology, Vol. 308, 2018, pp. 265–277, https://doi.org/10.1016/j.geomorph.2018.02.004.
- Jin S., Sader S., Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances, Remote Sensing of Environment, 2005, No. 94, pp. 364–372, DOI: 10.1016/j.rse.2004.10.012.
- Kaufman Y. J., Tanre D., Atmospherically resistant vegetation index (ARVI) for EOS-MODIS, IEEE Trans. Geoscience and Remote Sensing, New York, 1992, Vol. 30, Issue 2, pp. 261–270, DOI: 10.1109/36.134076.
- Luman D. E., Panno S. V., Mapping palimpsest karst features on the Illinois sinkhole plain using historical aerial photography, Carbonates and Evaporites, 2013, No. 28, pp. 201–214, http://dx.doi.org/10.1007/s13146-012-0107-4.
- Meijerink A., Bannert D., Batelaan O., Lubczynski M., Pointet T., Remote Sensing Applications to Groundwater, Paris, France, 304 p.
- Panno S. V., Weibel C. P., Li W., Karst regions of Illinois: Illinois State Geological Survey, Open File Ser. 1997-2, 1996, 90 p.
- Rouse J. W., Haas R. H., Scheel J. A., Deering D. W., Monitoring Vegetation Systems in the Great Plains with ERTS, Proc. 3 rd Earth Resource Technology Satellite-1 Symp. (ERTS-1), 1974, Vol. 1, pp. 48–62.
- Shaban A., Khawlie M., Abdallah C., Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon, Hydrogeology J., 2006, No. 14, pp. 433–443, https://doi.org/10.1007/s10040-005-0437-6.
- Siart C., Bubenzer O., Eitel B., Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: A multi-component case study on Mediterranean karst in Central Crete, Geomorphology, 2009, No. 112(1), pp. 106–121, DOI: 10.1016/j.geomorph.2009.05.010.
- Susantoro T. M., Wikantika K., Saepuloh A., Harsolumakso A. H., Selection of vegetation indices for mapping the sugarcane condition around the oil and gas field of North West Java Basin, Indonesia, IOP Conf. Ser.: Earth and Environmental Science, 2018, 149 p., DOI: 10.1088/1755-1315/149/1/012001.
- Valjavec M. B., Ciglič R., Oštir K., Ribeiro D., Modelling habitats in karst landscape by integrating remote sensing and topography data, Open Geosciences, 2018, No. 10, pp. 137–156, https://doi.org/10.1515/geo-2018-0011.