ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 124-137

Relationships between forest stand parameters and Sentinel-2 spectral reflectance in the Central Russian forest-steppe

E.A. Terekhin 1 
1 Belgorod State National Research University, Belgorod, Russia
Accepted: 28.10.2022
DOI: 10.21046/2070-7401-2022-19-6-124-137
The article presents results of relationships analysis between forest stand parameters (age, height, growing stock volume) and Sentinel-2 spectral reflectance in the Central Russian forest-steppe. The age of oak forests is inversely related to the reflectance in all spectral ranges. The strongest relationship between age and spectral response was found in the red and SWIR bands. The relationships between forest age and reflectance in all Sentinel-2 bands are curvilinear and are most reliably approximated by a logarithmic curve. The height and growing stock volume of oak forests are also in inverse, curvilinear dependence with spectral reflectance in all ranges. The relationship of the height of oak forests with the spectral response is stronger than with the age of the stand. Ash-dominated forests are characterized by similar relationships between age, forest height, and spectral reflectance, as for oak-dominated forests. For age and height of forests dominated by ash, the strongest relationship with the spectral reflectance values was also found for the Sentinel-2 SWIR bands.
Keywords: forest age, forest height, Central Russian forest-steppe, remote sensing data, Sentinel-2
Full text


  1. Bugaev V. A., Musievskii A. L., Tsaralunga V. V., Dubravy lesostepi (Oak forests of the forest-steppe), Voronezh: Voronezhskaya gosudarstvennaya lesotekhnicheskaya akademiya, 2013, 247 p. (in Russian).
  2. Gavrilyuk E. A., Koroleva N. V., Karpukhina D. A., Sochilova E. N., Ershov D. V., Geospatial modeling of biometric and structural forest attributes in the Bryansk oblast based on satellite imagery and selective inventory data, Lesovedenie, 2021, No. 6, pp. 609–626 (in Russian), DOI: 10.31857/S002411482106005X.
  3. Degtyar A. V., Grigoreva O. I., Development of land forests of the Belgorod region for the 400-year period, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta, Ser.: Estestvennye nauki, 2018, Vol. 42, No. 4, pp. 574–586 (in Russian), DOI: 10.18413/2075-4671-2018-42-4-574-586.
  4. Zharko V. O., Bartalev S. A., Egorov V. A., Investigation of forest growing stock volume estimation possibilities over Russian Primorsky Krai region using Proba-V satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 157–168 (in Russian), DOI: 10.21046/2070-7401-2018-15-1-157-168.
  5. Zhirin V. M., Knyazeva S. V., Eidlina S. P., The eco-dynamical study of forest-forming process with space imagery, Lesovedenie, 2013, No. 5, pp. 76–85 (in Russian).
  6. Zhirin V. M., Knyazeva S. V., Eydlina S. P., Dynamics of spectral brightness of the species/age structure for groups of forest types on Landsat satellite images, Contemporary Problems of Ecology, 2014, Vol. 7, No. 7, pp. 788–796, DOI: 10.1134/S1995425514070142.
  7. Reutskaya V. V., Arefev Yu.F., Biodiversity and biointegration in the forest ecosystems of the Middle-Russian forest-steppe, Problemy regional’noi ekologii, 2009, No. 1, pp. 125–129 (in Russian).
  8. Sochilova E. N., Ershov D. V., Possibility analysis of stem volume of forests assessment using Landsat ETM data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 277–282 (in Russian).
  9. Terekhin E. A., Estimation of forest disturbance in the forest-steppe zone at the beginning of the XXI century using satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 134–146 (in Russian), DOI: 10.21046/2070-7401-2020-17-2-134-146.
  10. Ahmed O. S., Franklin S. E., Wulder M. A., White J. C., Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm, ISPRS J. Photogrammetry and Remote Sensing, 2015, Vol. 101, pp. 89–101, DOI: 10.1016/j.isprsjprs.2014.11.007.
  11. Astola H., Häme T., Sirro L., Molinier M., Kilpi J., Comparison of Sentinel-2 and Landsat-8 imagery for forest variable prediction in boreal region, Remote Sensing of Environment, 2019, Vol. 223, pp. 257–273, DOI: 10.1016/j.rse.2019.01.019.
  12. Cardille J. A., Perez E., Crowley M. A., Wulder M. A., White J. C., Hermosilla T., Multi-sensor change detection for within-year capture and labelling of forest disturbance, Remote Sensing of Environment, 2022, Vol. 268, Art. No. 112741, DOI: 10.1016/j.rse.2021.112741.
  13. Graf W., Kleinn C., Schall P., Nauss T., Detsch F., Magdon P. P., Analyzing the relationship between historic canopy dynamics and current plant species diversity in the herb layer of temperate forests using long-term Landsat time series, Remote Sensing of Environment, 2019, Vol. 232, Art. No. 111305, DOI: 10.1016/j.rse.2019.111305.
  14. Hall R. J., Skakun R. S., Arsenault E. J., Case B. S., Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume, Forest Ecology and Management, 2006, Vol. 225, No. 1–3, pp. 378–390, DOI: 10.1016/j.foreco.2006.01.014.
  15. Kimes D. S., Holben B. N., Nickeson J. E., McKee W. A., Extracting forest age in a Pacific Northwest forest from Thematic Mapper and topographic data, Remote Sensing of Environment, 1996, Vol. 56, No. 2, pp. 133–140, DOI: 10.1016/0034-4257(95)00230-8.
  16. Kuusinen N., Tomppo E., Shuai Y., Berninger F., Effects of forest age on albedo in boreal forests estimated from MODIS and Landsat albedo retrievals, Remote Sensing of Environment, 2014, Vol. 145, pp. 145–153, DOI: 10.1016/j.rse.2014.02.005.
  17. Li A., Huang C., Sun G., Shi H., Toney C., Zhu Z., Rollins M. G., Goward S. N., Masek J. G., Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data, Remote Sensing of Environment, 2011, Vol. 115, No. 8, pp. 1837–1849, DOI: 10.1016/j.rse.2011.03.001.
  18. Lu D., The potential and challenge of remote sensing based biomass estimation, Intern. J. Remote Sensing, 2006, Vol. 27, No. 7, pp. 1297–1328, DOI: 10.1080/01431160500486732.
  19. Lu D., Mausel P., Brondı́zio E., Moran E., Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin, Forest Ecology and Management, 2004, Vol. 198, No. 1, pp. 149–167, DOI: 10.1016/j.foreco.2004.03.048.
  20. Matasci G., Hermosilla T., Wulder M. A., White J. C., Coops N. C., Hobart G. W., Bolton D. K., Tompalski P., Bater C. W., Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots, Remote Sensing of Environment, 2018, Vol. 216, pp. 697–714, DOI: 10.1016/j.rse.2018.07.024.
  21. Morresi D., Vitali A., Urbinati C., Garbarino M., Forest Spectral Recovery and Regeneration Dynamics in Stand-Replacing Wildfires of Central Apennines Derived from Landsat Time Series, Remote Sensing, 2019, Vol. 11, No. 3, Art. No. 308, DOI: 10.3390/rs11030308.
  22. Potapov P., Li X., Hernandez-Serna A., Tyukavina A., Hansen M. C., Kommareddy A., Pickens A., Turubanova S., Tang H., Silva C. E., Armston J., Dubayah R., Blair J. B., Hofton M., Mapping global forest canopy height through integration of GEDI and Landsat data, Remote Sensing of Environment, 2021, Vol. 253, Art. No. 112165, DOI: 10.1016/j.rse.2020.112165.
  23. Socha J., Pierzchalski M., Bałazy R., Ciesielski M., Modelling top height growth and site index using repeated laser scanning data, Forest Ecology and Management, 2017, Vol. 406, pp. 307–317, DOI: 10.1016/j.foreco.2017.09.039.
  24. Zhang Y., Ling F., Wang X., Foody G. M., Boyd D. S., Li X., Du Y., Atkinson P. M., Tracking small-scale tropical forest disturbances: Fusing the Landsat and Sentinel-2 data record, Remote Sensing of Environment, 2021, Vol. 261, Art. No. 112470, DOI: 10.1016/j.rse.2021.112470.
  25. Zheng D., Rademacher J., Chen J., Crow T., Bresee M., Le Moine J., Ryu S.-R., Estimating aboveground biomass using Landsat-7 ETM+ data across a managed landscape in northern Wisconsin, USA, Remote Sensing of Environment, 2004, Vol. 93, No. 3, pp. 402–411, DOI: 10.1016/j.rse.2004.08.008.