ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 63-75

Reanalysis of hydrophysical fields based on assimilation of data from the IKI-Monitoring Center for Collective Use in the hydrothermodynamics model of the Black, Azov and Marmara seas

N.B. Zakharova 1 , E.I. Parmuzin 1, 2 , N.R. Lezina 1 , V.I. Agoshkov 1, 2 , T.O. Sheloput 1, 3 , S.A. Lebedev 4, 1 , V.P. Shutyaev 1, 3 , B.S. Shevchenko 2 
1 Marchuk Institute of Numerical Mathematics RAS, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia
3 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
4 Geophysical Center RAS, Moscow, Russia
Accepted: 21.11.2022
DOI: 10.21046/2070-7401-2022-19-6-63-75
This work is devoted to the reanalysis of hydrophysical fields based on the assimilation of remote sensing observational data in a numerical model of the hydrothermodynamics of the Black, Azov and Marmara seas in order to integrate the calculation results into the system for monitoring the state of marine areas. The analysis of Aqua, Terra, Sentinel and SNPP satellite data on the sea surface temperature received from the IKI-Monitoring Center for Collective Use was carried out. To process the obtained observational data, to identify and eliminate erroneous values, the statistical method for finding anomalous values and the three-sigma rule were used. An algorithm for variational assimilation of satellite data was implemented. The work uses the INMOM marine circulation mathematical model based on the complete equations of marine hydrothermodynamics. As a result of modeling using the procedure of variational assimilation of observational data, the fields of the main hydrophysical parameters (temperature, salinity, velocity field, sea level) were constructed for the studied water areas. The calculated fields were integrated into the See the Sea satellite service for solving interdisciplinary problems of marine research. The three-dimensional reanalysis fields transferred to the service add the possibility for users to study processes in the water column.
Keywords: sea surface temperature, data assimilation, data processing, satellite data, collective use center, reanalysis
Full text

References:

  1. Agoshkov V. I., Aseev N. A., Giniatulin S. V., Zalesnyi V. B., Zakharova N. B., Parmuzin E. I., Informational computational system “INM RAS – Black Sea”, Moscow: INM RAS, 2016, 137 p. (in Russian).
  2. Akimov E. A., Stanichnyi S. V., Polonskii A. B., Using SEVIRI scanner data to estimate the temperature of the surface layer of the Black Sea, Marine Hydrophysical J., 2014, No. 6, pp. 37–46 (in Russian).
  3. Ginzburg A. I., Fedorov K. N., Thermal state of the boundary layer of cooling water during the transition from free convection to forced convection, Izvestiya Akademii nauk SSSR, Fizika atmosphery i okeana, 1978, Vol. 14, pp. 778–785 (in Russian).
  4. Ginzburg A. I., Zatsepin A. G., Fedorov K. N., Thin structure of the thermal boundary layer in water at the water-air interface, Izvestiya Akademii nauk SSSR, Fizika atmosphery i okeana, 1977, Vol. 13, No. 12, pp. 1268–1277 (in Russian).
  5. Ginzburg A. I., Kostianoy A. G., Serykh I. V., Lebedev S. A., Climate Change in the Hydrometeorological Parameters of the Black and Azov Seas (1980–2020), Oceanology, 2021, Vol. 61, No. 6, pp. 745–756, DOI: 10.1134/S0001437021060060.
  6. Gmurman V. E., Teoriya veroyatnostei i matematicheskaya statistika, uchebnoe posobie dlya vuzov (Probability theory and mathematical statistics), 9th ed., Moscow: Vysshaya shkola, 2003, 479 p. (in Russian).
  7. Dumanskaya I. O., Zelenko A. A., Myslenkov S. A., Nesterov E. S., Popov S. K., Resnyanskii Yu. D., Strukov B. S., Marine hydrological forecasts and operational oceanology in the Hydrometeorological Center of Russia, Hydrometeorological Research and Forecasting, 2019, Vol. 374, No. 4, pp. 149–183 (in Russian).
  8. Zelenko A. A., Vil’fand R. M., Resnyanskii Yu. D., Strukov B. S., Tsyrulnikov M. D., Svirenko P. I., An ocean data assimilation system and reanalysis of the World Ocean hydrophysical fields, Izvestiya, Atmospheric and Ocean Physics, 2016, Vol. 52, No. 4, pp. 443–454, DOI: 10.1134/S0001433816040149.
  9. Knysh V. V., Demyshev S. G., Kubryakov A. I., Moiseenko V. A., Mizyuk A. I., Inyushina N. V., Martynov M. V., Korotaev G. K., Comparison of results of Black Sea hydrophysical fields reanalysis performed by models in σ- and z-coordinates, In: Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon morya, Sevastopol: MGI NAN Ukrainy, 2011, Vol. 24, pp. 19–37 (in Russian).
  10. Lavorko V. S., On turbulent exchange and heat fluxes in water near sea surface, Izvestiya Akademii nauk SSSR, Fizika atmosphery i okeana, 1970, Vol. 6, No. 9, pp. 970–972 (in Russian).
  11. Lebedev N. E., Savoskin V. M., Stanichnyi S. V., Determination of surface temperature and temperature difference in the skin layer from the side of a moving vessel according to IR measurements, Marine Hydrophysical J., 1994, No. 2, pp. 83–88 (in Russian).
  12. Loupian E. A., Matveev A. A., Uvarov I. A., Bocharova T.Yu., Lavrova O. Yu., Mityagina M. I., The satellite service See the Sea — a tool for the study of oceanic phenomena and processes, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 251–261 (in Russian).
  13. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284 (in Russian).
  14. Mizyuk A. I., Re-analysis of Black Sea hydrophysical fields based on assimilation of temperature and salinity measurements in the z-coordinate model, Marine Hydrophysical J., 2014, No. 3, pp. 30–47 (in Russian).
  15. Rubakina V. A., Kubryakov A. A., Stanichny S. V., Seasonal and diurnal variability of the thermal skin layer characteristics based on a comparison of satellite measurements by SEVIRI and data from temperature-profiling drifters, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, No. 9, pp. 950–961, DOI: 10.1134/S0001433821090607.
  16. Fedorov K. N., Physical structure of the subsurface layer of the ocean, Meteorologiya i gidrologiya, 1981, No. 10, pp. 45–51 (in Russian).
  17. Khundzhua G. G., Andreev E. G., An experimental study of heat exchange between the ocean and the atmosphere in small-scale interaction, Izvestiya Akademii nauk SSSR, Fizika atmosphery i okeana, 1974, Vol. 10, pp. 685–687 (in Russian),
  18. Khundzhua G. G., Gusev A. M., Andreev E. G., Gurov V. V., Skorokhvatov N. A., On the Structure of the Ocean Surface Cold Film and On the Heat Exchange of the Ocean with the Atmosphere, Izvestiya Akademii nauk SSSR, Fizika atmosphery i okeana, 1977, Vol. 13, No. 7, pp. 753–758 (in Russian).
  19. Yakovlev N. G., Volodin E. M., Gritsun A. S., Simulation of the Spatiotemporal Variability of the World Ocean Sea Surface Hight by the INM Climate Model, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 4, pp. 376–385, DOI: 10.1134/S0001433816040125.
  20. Agoshkov V. I., Parmuzin E. I., Zakharova N. B., Shutyaev V. P., Variational assimilation with covariance matrices of observation data errors for the model of the Baltic Sea dynamics, Russian J. Numerical Analysis and Mathematical Modelling, 2018, Vol. 33, No. 3, pp. 149–160, DOI: 10.1515/rnam-2018-0013.
  21. Agoshkov V. I., Shutyaev V. P., Parmuzin E. I., Zakharova N. B., Sheloput T. O., Lezina N. R., Variational Data Assimilation in the Mathematical Model of the Black Sea Dynamics, Physical Oceanography, 2019, Vol. 26, No. 6, pp. 515–527, DOI: 10.22449/1573-160X-2019-6-515-527.
  22. Belokopytov V. N., Interannual variations of the renewal of waters of the cold intermediate layer in the Black Sea for the last decades, Physical Oceanography, 2011, Vol. 20, No. 5, pp. 347–355, DOI: 10.1007/s11110-011-9090-x.
  23. Donlon C., Robinson I., Casey K. S., Vazquez-Cuervo J., Armstrong E., Arino O., Gentemann C., May D., LeBorgne P., Piollé J., Barton I., Beggs H., Poulter D. J. S., Merchant C. J., Bingham A., Heinz S., Harris A., Wick G., Emery B., Minnett P., Evans R., Llewellyn-Jones D., Mutlow C., Reynolds R. W., Kawamura H., Rayner N., The global ocean data assimilation experiment high-resolution sea surface temperature pilot project, Bull. American Meteorological Society, 2007, Vol. 88, No. 8, pp. 1197–1214, DOI: 10.1175/BAMS-88-8-1197.
  24. Liang X. M., Ignatov A., AVHRR, MODIS, and VIIRS radiometric stability and consistency in SST bands, J. Geophysical Research: Oceans, 2013, Vol. 118, No. 6, pp. 3161–3171, DOI: 10.1002/jgrc.20205.
  25. McAlister E. D., McLeish W., Heat transfer in the top millimeter of the ocean, J. Geophysical Research, 1969, Vol. 74, No. 13, pp. 3408–3414, DOI: 10.1029/JC074i013p03408.
  26. Petrenko B., Pryamitsyn V., Ignatov A., Jonasson O., Kihai Y., AVHRR GAC Sea Surface Temperature Reanalysis Version 2, Remote Sensing, 2022, Vol. 14, Art. No. 3165, DOI: 10.3390/rs14133165.
  27. Pisano A., Nardelli B. Buongiorno, Tronconi C., Santoleri R., The new Mediterranean optimally interpolated pathfinder AVHRR SST Dataset (1982–2012), Remote Sensing of Environment, 2016, Vol. 176, pp. 107–116, DOI: 10.1016/j.rse.2016.01.019.
  28. Rosner B., On the detection of many outliers, Technometrics, 1975, Vol. 17, No. 2, pp. 221–227, DOI: 10.1080/00401706.1975.10489305.
  29. Sarkisyan A. S., Ibrayev R. A., Iakovlev N. G., High resolution and four-dimensional analysis as a prospect for ocean, Russian J. Numerical Analysis and Mathematical Modelling, 2010, Vol. 25, No. 5, pp. 477–496, DOI: 10.1515/RJNAMM.2010.030.
  30. Saunders P. M., Aerial measurement of sea surface temperature in the infrared, J. Geophysical Research, 1967, Vol. 72, No. 16, pp. 4109–4117, DOI: 10.1029/JZ072i016p04109.
  31. Voevodin V. l., Antonov A., Nikitenko D., Shvets P., Sobolev S., Sidorov I., Stefanov K., Voevodin Vad., Zhumatiy S., Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community, Supercomputing Frontiers and Innovations, 2019, Vol. 6, No. 2, pp. 4–11, DOI: 10.14529/jsfi190201.
  32. Wu J., On the cool skin of the ocean, Boundary-Layer Meteorology, 1985, Vol. 31, No. 2, pp. 203–207, DOI: 10.1007/BF00121179.
  33. Zalesny V. B., Diansky N. A., Fomin V. V., Moshonkin S. N., Demyshev S. G., Numerical model of the circulation of the Black Sea and the Sea of Azov, Russian J. Numerical Analysis and Mathematical Modelling, 2012, Vol. 27, No. 1, pp. 95–111, DOI: 10.1515/rnam-2012-0006.