ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 283-290

Some problems of basic lidar coefficients interpretation

G.P. Arumov 1 , A.V. Bukharin 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 05.12.2022
DOI: 10.21046/2070-7401-2022-19-6-283-290
The capabilities of a miniature elastic scattering lidar with an optimal coaxial sounding scheme are analyzed. In such a scheme, the geometric form factor is constant along the entire route. To simulate the shape of a lidar signal from a homogeneous atmosphere without attenuation (hardware function) on paths with a fixed range, standard screens with transmittance modulation can be used. Unlike conventional lidars, backscattering coefficient measurements can be calibrated either using standard scattering surfaces with a known backscattering angular pattern or using reflective spheres. The interpretation of the microphysical parameters of the scattering layer is based on the use of the model of an equivalent layer consisting of monodisperse particles. The microstructure of the equivalent layer is determined from measurements of backscattering signals on the particles of the scattering medium using unnormalized first and second order moments. The application of the differential cross section for backscattering by an individual particle to measure the concentration of equivalent particles by the backscattering coefficient is substantiated. The proposed method is relevant in the problems of remote sensing of surface paths by lidars with an extremely low energy per pulse, followed by a microphysical interpretation of the base coefficients.
Keywords: coaxial scheme, optimal scheme, backscatter coefficient, calibration, equivalent cross section, unnormalized moment, equivalent medium, concentration, remote sensing, conducting sphere, perforated screen, scattering layer, geometric form factor, elastic scattering lidar
Full text


  1. Arumov G. P., Bukharin A. V., Three-Dimensional Screens for Measuring Non-normalized Moments, Measurement Techniques, 2018. Vol. 61, No. 9, pp. 908–913, DOI: 10.1007/s11018-018-1523-1.
  2. Arumov G. P., Bukharin A. V., Tyurin A. V., Use of Statistically Inhomogeneous Screens in Calibration of Lidar from the Parameters of Images of Particles for the Bottom Layer of the Atmosphere, Measurement Techniques, 2014, Vol. 57, No. 3, pp. 287–293,
  3. Arumov G. P., Bukharin A. V., Makarov V. S., Three-dimensional reflecting objects in the problem of modeling a lidar signal from a scattering layer, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4. pp. 328–334 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-328-334.
  4. Bukharin A. V., Arumov G. P., Blikh Yu.M., Makarov V. S., Turin A. V., Modulation of diode laser radiation for the formation of a distance-independent backscattered signal, Quantum Electronics, 2016, Vol. 46, No. 10, pp. 877–882, DOI: 10.1070/QEL16009.
  5. Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Aerosol, plasma vortices and atmospheric processes, Izvestiya, Atmospheric and Oceanic Physics, 2018, Vol. 54, No. 11, pp. 1513–1524, DOI: 10.1134/S0001433818110038.
  6. Kavaya M. J., Menzies R. T., Lidar aerosol backscatter measurements: systematic, modeling, and calibration error considerations, Applied Optics, 1985, Vol. 24, No. 21, pp. 3444–3453,
  7. Measures R. M., Laser Remote Sensing: Fundamentals and Applications, New York: Wiley, 1984, 912 p.
  8. Veselovskii I., Kolgotin A., Griaznov V., Muller D., Wandinger U., Whiteman D. N., Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding, Applied Optics, 2002, Vol. 41, No. 18, pp. 3685–3699,