ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 9-17

Differences in the Ocean Color atmospheric correction algorithms for remote sensing reflectance retrievals for different atmospheric conditions

E.B. Shybanov 1 , A.S. Papkova 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 03.11.2022
DOI: 10.21046/2070-7401-2022-19-6-9-17
The work is devoted to estimating the spectral course of validation error of satellite and in situ measurements of remote sensing reflectance for various atmospheric conditions. During data validation, a number of systematic errors of standard algorithms were noted, for example, negative values of remote sensing reflectance in the short-wavelength region at 412 and 443 nm in the presence of dust in the atmosphere. It is shown that the modern approach to determining aerosol light scattering in the short-wavelength part of the visible range by extrapolating the signal from the near-IR region is not sufficiently correct from a physical point of view, and similar solutions by the interpolation method have more accurate estimates. The obtained results show that in the presence of an absorbing aerosol, the spectral law of atmospheric correction errors is close to the function λ–4. This effect is explained by the fact that dust aerosol is determined by remote sensing methods using the Gordon and Wang algorithms using the infrared channel, but arid aerosol has the main effect on the ratio of the aerosol and molecular components (shortwave range). This paper presents trends for further interpolation of satellite data not only under the condition of a clean atmosphere, but also in the presence of an absorbing aerosol. Experimental patterns of validation error for MODIS Aqua have been obtained.
Keywords: atmospheric correction, remote sensing reflectance, dust aerosol, normalized water-leaving radiance, aerosol optical depth, MODIS Aqua, AERONET
Full text

References:

  1. Kopelevich O. V., Vazyulya S. V., Saling I. V., Sheberstov S. V., Burenkov V. I., Electronic atlas “Biooptical characteristics of the Russian Seas from satellite ocean color data of 1998–2014”, Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 99–110 (in Russian).
  2. Korchemkina E. N., Shybanov E. B., Lee M. E., Atmospheric Correction Improvement for the Remote Sensing of Black Sea Waters, Issledovanie Zemli iz kosmosa, 2009, Vol. 6, pp. 24–30 (in Russian).
  3. Parshikov S. V., Remote sensing of optically active impurities using the short-wavelength part of the spectrum, Avtomatizirovannye sistemy kontrolya sostoyaniya morskoi sredy, 1992, pp. 65–78 (in Russian).
  4. Suetin V. S., Korolev S. N., Application of Satellite Data for Retrieving the Light Absorption Characteristics in the Black Sea Waters, Physical Oceanography, 2021, Vol. 28, No. 2, pp. 205–214., DOI: 10.22449/1573-160X-2021-2-205-214.
  5. Churilova T. Ya., Berseneva G. P., Absorption of light by phytoplankton, detritus, and dissolved organic substances in the coastal region of the Black Sea (July – August 2002), Physical Oceanography, 2004, Vol. 14, No. 4, pp. 221–233, DOI: 10.1007/s11110-004-0003-0.
  6. Shybanov E. B., Papkova A. S., Kalinskaya D. V., Specifics of using atmospheric correction algorithms to determine the brightness of the black sea on days of dust transport from MODIS satellite data, Atmospheric and Oceanic Optics, 2022, Vol. 35, No. 7(402), pp. 532–538 (in Russian), DOI: 10.15372/AOO20220703.
  7. Bricaud A., Babin M., Morel A., Claustre H., Variability in the chlorophyll-specific absorption coefficients of natural phyto-plankton: Analysis and parameterization, J. Geophysical Research, 1995, Vol. 100, pp. 13321–13332, DOI: 10.1029/95JC00463.
  8. Gordon H. R., Can the Lambert-Beer low be applied to the diffuse attenuation coefficient of ocean water, Limnology and Oceanography, 1989, Vol. 34, No. 8, pp. 1389–1409, DOI: 10.4319/lo.1989.34.8.1389.
  9. Morel A., Diffusion de la lumière par les eaux de mer: Résulats expérimentaux et approche théorique, AGARD, Lecture series, 1973, Vol. 61, pp. 31.1–31.76.
  10. Moulin C., Gordon H. R., Banzon V. F., Evans R. H., Assessment of Saharan dust absorption in the visible from SeaWiFS imagery, J. Geophysical Research, 2001, Vol. 106D, pp. 18239–18250, DOI: 10.1029/2000JD900812.
  11. Papkova A., Papkov S., Shukalo D., Prediction of the Atmospheric Dustiness over the Black Sea Region Using the WRF-Chem Model, FLUIDS, 2021, Vol. 6, No. 6, Art. No. 201, DOI: 10.3390/fluids6060201.
  12. Schoeberl M. R., Newman P. A., A multiple-level trajectory analysis of vortex filaments, J. Geophysical Research, 1995, Vol. 25, pp. 801–816, DOI: : 10.1029/95JD02414.
  13. Smith R. C., Optical properties of clearest natural waters (200–800 nm), Applied Optics, 1981, Vol. 20, pp. 177–184.
  14. Werdell P. J., Bailey S. W., The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS): Current Architecture and Implementation, NASA/TM 2002–211617, Greenbelt, Maryland: Goddard Space Flight Center, 2002.
  15. Zibordi G., Holben B., Slutsker I., Giles G., D’Alimonte D., Melin F., Berthon J. F., Vandemark D., Feng H., Schuster G., Fabbri B. E., Kaitala S., Seppala J., AERONET-OC: A Network for the Validation of Ocean Color Primary Products, J. Atmospheric and Oceanic Technology, 2009, Vol. 26, pp. 1634–1651, DOI: 10.1175/2009JTECHO654.1.