Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 175-185
On the retrieval of wind speed and friction wind speed based on Sentinel-1 and SFMR data under tropical cyclone conditions
O.S. Ermakova
1 , N.S. Rusakov
1 , E.I. Poplavsky
1 , D.A. Sergeev
1 , Yu.I. Troitskaya
1 1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 18.11.2022
DOI: 10.21046/2070-7401-2022-19-6-175-185
The work is devoted to the development of an algorithm for wind speed at a height of 10 m and friction speed retrieval in hurricane conditions based on a new geophysical model function (GMF) using image data obtained for cross-polarization from the Sentinel-1 satellite in IW (Interferometric Wide swath) mode. The images were collocated with measurements from the SFMR microwave radiometer. The analysis was performed for satellite images of six hurricanes (categories on the Saffir-Simpson Hurricane Wind Scale — SSHS): Irma (Category 5), Maria (Category 5), Hermine (Category 1), Larry (Category 3), Dorian (Category 5), Delta (Category 4). The creation of the GMF is based on the approach proposed by the authors earlier, based on the calibration of the ocean surface emissivity, obtained from SFMR measurements, to the data on the parameters of the atmospheric boundary layer, obtained from the data of GPS-dropsondes. The proposed GMF is suitable for wind speed retrieval for moderate winds with speeds from 15 m/s up to extreme values of about 69 m/s for the first two image sub swaths and up to 40 m/s for the third image sub swath, friction velocities can be retrieved in the range from 0.8 to 1.7 m/s for all sub swaths. It is shown that the results of calculations within the proposed geophysical model function are in good agreement with the existing MS1A GMF, in this case, the limiting values of the retrieved wind speeds obtained with our GMF turn out to be higher for the first two sub swaths.
Keywords: wind speed, tropical cyclone, cross polarization, radiometer, SAR image, friction velocity
Full textReferences:
- Donelan M. A., Haus B. K., Reul N., Plant W. J., Stiassnie M., Graber H. C., Brown O. B., Saltzman E. S., On the limiting aerodynamic roughness of the ocean in very strong winds, Geophysical Research Letters, 2004, Vol. 31, Art. No. L18306, https://doi.org/10.1029/2004GL019460.
- Gao Y., Sun J., Zhang J., Guan C., Extreme Wind Speeds Retrieval Using Sentinel-1 IW Mode SAR Data, Remote Sensing, 2021, Vol. 13, Art. No. 1867, https://doi.org/10.3390/rs13101867.
- Hersbach H., CMOD5, an improved geophysical model function for ERS C-band scatterometry, technical memo, European Centre for Medium-Range Weather Forecasts, 2003, 52 p.
- Hersbach H., Comparison of C-Band Scatterometer CMOD5.N Equivalent Neutral Winds with ECMWF, J. Atmospheric and Oceanic Technology, 2010, Vol. 27, pp. 721–736, DOI: 10.1175/2009JTECHO698.1.
- Holthuijsen L. H., Powell M. D., Pietrzak J. D., Wind and waves in extreme hurricanes, J. Geophysical Research, 2012, Vol. 117, Issue 9, Art. No. C09003, https://doi.org/10.1029/2012JC007983.
- Horstmann J., Thompson D. R., Monaldo F., Iris S., Graber H. C., Can synthetic aperture radars be used to estimate hurricane force winds? Geophysical Research Letters, 2005, Vol. 32, Issue 22, Art. No. L22801, https://doi.org/10.1029/2005GL023992.
- Hwang P. A., Stoffelen A., van Zadelhoff G.-J., Perrie W., Zhang B., Li H., Shen H., Cross-polarization geophysical model function for C-band radar backscattering from the ocean surface and wind speed retrieval, J. Geophysical Research: Ocean, 2015, Vol. 120, Issue 2, pp. 893–909, https://doi.org/10.1002/2014JC010439.
- Jones W. L., Schroeder L. C., Radar Backscatter from the Ocean: Dependence on Surface Friction Velocity, Boundary-Layer Meteorology, 1978, Vol. 13, pp. 133–149, https://doi.org/10.1007/BF00913867.
- Liu W. T., Tang W., Relating wind and stress under tropical cyclones with scatterometer, J. Atmospheric and Oceanic Techology, 2016, Vol. 33(6), pp. 1151–1158, DOI: 10.1175/JTECH-D-16-0047.1.
- Liu W. T., Xie X., Sea surface wind/stress vector, In: Encyclopedia of Remote Sensing, New York: Springer, 2014, pp. 759–767, DOI: 10.1007/978-0-387-36699-9.
- Mouche A., Chapron B., Zhang B., Husson R., Combined Co- and Cross-Polarized SAR Measurements Under Extreme Wind Conditions, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 55, Issue 12, pp. 6746–6755, DOI: 10.1109/TGRS.2017.2732508.
- Poplavsky E., Rusakov N., Ermakova O., Sergeev D., Troitskaya Y., Towards an Algorithm for Retrieval of the Parameters of the Marine Atmospheric Boundary Layer at High Wind Speeds Using Collocated Aircraft and Satellite Remote Sensing, J. Marine Science and Engineering, 2022, Vol. 10(8), Art. No. 1136, https://doi.org/10.3390/jmse10081136.
- Powell M. D., Vickery P. J., Reinhold T. A., Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, 2003, Vol. 422(6929), pp. 279–283, DOI: 10.1038/nature01481.
- Shen H., Perrie W., He Y., A new hurricane wind retrieval algorithm for SAR images, Geophysical Research Letters, 2006, Vol. 33, Issue 21, Art. No. L21812, https://doi.org/10.1029/2006GL027087.
- Stoffelen A., Anderson D., Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4, J. Geophysical Research: Atmospheres, 1997, Vol. 102, Issue C3, pp. 5767–5780, https://doi.org/10.1029/96JC02860.
- Uhlhorn E. W., Black P. G., Verification of remotely sensed sea surface winds in hurricanes, J. Atmospheric and Oceanic Technology, 2003, Vol. 20, pp. 99–116, https://doi.org/10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.
- Uhlhorn E. W., Black P. G., Franklin J. L., Goodberlet M., Carswell J., Goldstein A. S., Hurricane Surface Measurements from an Operational Stepped Frequency Microwave Radiometer, Monthly Weather Review, 2007, Vol. 135(9), pp. 3070–3085, DOI: 10.1175/MWR3454.1.
- Vachon P. W., Wolfe J., C-band cross-polarization wind speed retrieval, IEEE Geoscience and Remote Sensing Letters, 2011, Vol. 8(3), pp. 456–459, DOI: 10.1109/LGRS.2010.2085417.
- Weissman D. E., Bourassa M. A., The influence of rainfall on scatterometer backscatter within tropical cyclone environments — Implications on parameterization of sea-surface stress, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, Issue 12, pp. 4805–4814, DOI: 10.1109/TGRS.2011.2170842.
- Zhang B., Perrie W., Cross-polarized synthetic aperture radar: A new potential technique for hurricanes, Bull. American Meteorological Society, 2012, Vol. 93, Issue 4, pp. 531–541, DOI: 10.1175/BAMS-D-11-00001.1.
- Zhang B., Perrie W., He Y., Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model, J. Geophysical Research, 2011, Vol. 116, Issue C8, Art. No. C08008, https://doi.org/10.1029/2010JC006522.
- Zhang B., Perrie W., Zhang J., Uhlhorn E., He Y., High-Resolution Hurricane Vector Winds from C-Band Dual-Polarization SAR Observations, J. Atmospheric and Oceanic Technology, 2014, Vol. 31(2), pp. 272–286, DOI: 10.1175/JTECH-D-13-00006.1.