ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 138-150

Development of the index paradigm in remote sensing of soil cover

I.M. Mikhailenko 1 , V.N. Timoshin 1 
1 Agrophysical Research Institute, Saint Petersburg, Russia
Accepted: 22.11.2022
DOI: 10.21046/2070-7401-2022-19-6-138-150
The aim of the work is the systematic analysis and generalization of the conventional index paradigm of using Earth remote sensing data to assess the state of the soil and vegetation cover. It has been established that the scalar form and the lack of a mathematical basis do not allow the use of conventional vegetation and the similar indices for estimating the vectors of quantitative indicators of the soil and vegetation cover. At the same time, for making many types of management decisions in agriculture, it is important to build index images which reflect such qualitative indicators as types of cultivated and weed plants, the presence of plant diseases, damage of crops and soils, physical and chemical stresses. In terms of informational content, the evaluation of such qualitative states is a procedure for recognizing patterns or classes of soil-and-vegetation complex objects. The subjective empirical approach in choosing the spectral composition of the indices of their combinations, which is currently used, does not currently allow for sufficient reliability of such procedures. Therefore, the purpose of the study present is to formalize the process, which enables to completely exclude the empirical approach of constructing indices and automate the entire procedure for their formation for any number and types of recognizable objects. The basis of formalization is the algorithms for evaluating and selecting the information content of features, followed by the construction of index models, which are linear decision rules for class recognition. The attributes of the classes are the spectral subranges into which the entire spectrum of remote sensing data is divided. The number of informative features is selected from the condition for ensuring the required reliability of recognition of all observed objects (classes).
Keywords: index models, pattern recognition, informative features, algorithms, informative features, model identification
Full text


  1. Andreev G. G., Bocharov V. P., Sazonov N. V., Chaban L. N., Automation of thematic processing of space images in assessing the state of agricultural crops, Issledovanie Zemli iz kosmosa, 1986, No. 5, pp. 95–102 (in Russian).
  2. Danilov R. Yu., Kremneva O. Yu., Ismailov V. Ya., Tretyakov V. A., Rizvanov A. A., Krivoshein V. V., Pachkin A. A., General methodology and results of ground-based hyperspectral studies of seasonal changes in the reflective properties of agricultural crops and certain types of weeds, Sovremennye proplemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 113–127 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-113-127.
  3. Duda R., Hart P., Pattern Classification and Scene Analysis, New York; London; Sydney; Toronto: John Wiley and Sons, 1973.
  4. Kashkin V. B., Sukhinin A. I., Distantsionnoe zondirovanie Zemli iz kosmosa. Tsifrovaya obrabotka izobrazhenii (Remote sensing of the Earth from space. Digital image processing), Moscow: Logos, 2001, 264 p. (in Russian).
  5. Mikhaylenko I. M., Main tasks evaluationcrop condition and soil emissions on this space sensing, Ekologicheskie sistemy i pribory, 2011, No. 8, pp. 17–24 (in Russian).
  6. Tou J. T., Gonzalez R. C., Pattern Recognition Principles, Reading, Massachusetts; London; Amsterdam; Don Mills, Ontario; Sydney; Tokyo: Addison-Wesley Publ. Company, 1974. 378 p.
  7. Shannon K., Works on Information Theory and Cybernetics, R. L. Dobrushin, O. B. Lupanov (eds.), Moscow: Publ. House of Foreign Literature, 1963, 829 p. (in Russian).
  8. Eickhoff P., System Identification: Parameters and State Estimation, London: Wiley-Interscience, 1974, 555 p.
  9. Baret F., Guyot G., Major D., TSAVI: A vegetation index which minimizes soil brightness effects on LAI or APAR estimation, 12 th Canadian Symp. Remote Sensing and Remote Sensing Symp. (IGARSS’89), 10–14 July 1989, Vancouver, Canada, pp. 1355–1358, DOI: 10.1109/IGARSS.1989.576128.
  10. Clevers J. G. P. W., The derivation of a simplified reflectance model for the estimation of leaf area index, Remote Sensing of Environment, 1988, Vol. 35, pp. 53–70, DOI: 10.1016/0034-4257(88)90041-7.
  11. Crippen R. E., Calculating the Vegetation Index Faster, Remote Sensing of Environment, 1990, Vol. 34, pp. 71–73, DOI: 10.1016/0034-4257(90)90085-z.
  12. Crist E. P., Cicone R. C., Application of the tasseled cap concept to simulated thematic mapper data, Photogrammetric Engineering and Remote Sensing, 1984, Vol. 50, pp. 343–352.
  13. Huete A. R., A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 1988, Vol. 25, pp. 295–309, DOI: 10.1016/0034-4257(88)90106-X.
  14. Huete A. R., Jackson R. D., Post D. F., Spectral response of a plant canopy with different soil backgrounds, Remote Sensing of Environment, 1985, Vol. 17, pp. 37–53, DOI: 10.1016/0034-4257(85)90111-7.
  15. Jackson R. D., Spectral indices in n-space, Remote Sensing of Environment, 1983, Vol. 13, pp. 409–421, DOI: 10.1016/0034-4257(83)90010-X.
  16. Jordan C. F., Derivation of leaf area index from quality of light on the forest floor, Ecology, 1969, Vol. 50, pp. 663–666, DOI: 10.2307/1936256.
  17. Kaufman Y. J., Tanre D., Atmospherically resistant vegetation index (ARVI) for EOS-MODIS, IEEE Trans. Geoscience and Remote Sensing, 1992, Vol. 30, Issue 2, pp. 261–270, DOI: 10.1109/36.134076.
  18. Kauth R. J., Thomas G. S., The tasseled cap-A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat, Proc. Symp. Machine Processing of Remotely Sensed Data, 29 June – 1 July 1976, Paper 159, pp. 4B-41–4B-51.
  19. Kriegler F. J., Malia, W. A., Nalepka R. F., Richardson W., Preprocessing transformations and their effects on multispectral recognition, Proc. 6th Intern. Symp. Remote Sensing of Environment, Ann Arbor. MI: Univ. Michigan, 1969, pp. 97–131.
  20. Leprieur C., Verstraete M. M., Pinty B., Chehbouni A., NOAA/AVHRR Vegetation Indices: Suitability for Monitoring Fractional Vegetation Cover of the Terrestrial Biosphere, Physical Measurements and Signatures in Remote Sensing: Proc. 6 th ISPRS Symp., 1994, pp. 1103–1110.
  21. Lillesand T. M., Kiefer R. W., Remote Sensing and Image Interpretation, 2 nd ed, New York; Chichester; Brisbane; Toronto; Singapore: John Wiley and Sons, 1987, 721 p., DOI: 10.1080/01431168708954824.
  22. Pinty B., Verstraete M. M., GEMI: A Non-Linear Index to Monitor Global Vegetation from Satellites, Plant Ecology, 1991, Vol. 101, pp. 15–20, DOI: 10.1007/BF0031911.
  23. Qi. J., Chehbouni A., Huete A. R., Ker Y. H., Modified Soil Adjusted Vegetation Index (MSAVI), Remote Sensing of Environment, 1994, Vol. 48, pp. 119–126, DOI: 10.1016/0034-4257(94)90134-1.
  24. Richardson A. J., Everitt J. H., Using spectral vegetation indices to estimate rangeland productivity, Geocarto Intern, 1992, Vol. 1, pp. 63–69, DOI: 10.1080/10106049209354353.
  25. Richardson A. J., Wiegand C. L., Distinguishing vegetation from soil background information, Photogrammetric Engineering and Remote Sensing, 1977, Vol. 43, pp. 1541–1552.
  26. Rouse J. W., Haas R. H., Schell J. A., Deering D. W., Monitoring vegetation systems in the great plains with ERTS, Third ERTS Symp., NASA, Goddard Space Flight Center, 1973, Vol. 1, pp. 309–317.
  27. Tu T.-M., Chen Ch.-H., Wu J.-L., Chang Ch.-I., A Fast Two-Stage Classification Method for High Dimensional Remote Sensing Data, IEEE Trans. Geoscience and Remote Sensing, 1998, Vol. 36, No. 1, pp. 182–191, DOI: 10.1109/36.655328.