ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 163-172

Knowledge base for monitoring drainage melioration systems based on remote sensing data

E.P. Mitrofanov 1, 2 , O.A. Mitrofanova 1, 2 , Yu.G. Yanko 1 , A.F. Petrushin 1 , V.M. Bure 1, 2 
1 Agrophysical Research Institute, Saint Petersburg, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 01.12.2022
DOI: 10.21046/2070-7401-2022-19-6-163-172
Drainage melioration systems are important for agricultural areas with waterlogged zones. Open (surface) and closed (subsurface) drainage objects are distinguished. A promising direction for operational state assessment of drainage systems is the use of remote sensing data. A high potential for solving such problems has the use of unmanned aerial vehicles, which can obtain high-quality images of an agricultural area in various imaging spectra in a short time. In this work, as the first stage of solving a large-scale problem of automating image analysis methods for assessing the state of drainage complexes, a specialized knowledge base (KB) of the main drainage defects to be repaired, based on aerial photographs and ground measurements, is proposed. The KB structure developed on the basis of a conceptual model can be quickly implemented in web projects and applications, while allowing architectural changes to be made. Also, on the basis of many years of field experiments, the most common defects of drainage systems objects were identified.
Keywords: knowledge base, ontology, aerial photography, drainage systems, remote sensing data
Full text

References:

  1. Blokhin Yu. I., Yakushev V. V., Blokhina S. Yu., Petrushin A. F., Mitrofanova O. A., Mitrofanov E. P., Dvirnik A. V., New solutions for the reference data formation to improve the accuracy of the agrophysical soil properties determination from satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 164–178 (in Russian), https://doi.org/10.21046/2070-7401-2020-17-4-164-178.
  2. Doklad o sostoyanii i ispol’zovanii zemel’ sel’skokhozyaistvennogo naznacheniya Rossiiskoi Federatsii v 2018 godu (Report on the state and use of agricultural land in the Russian Federation in 2018), Moscow: Rosinformagrotech, 2020, pp. 82–84 (in Russian).
  3. Dubenok N. N., Yanko Yu. G., Petrushin A. F., Kalinichenko R. V., Remote sensing data in land-reclamation systems and reclaimed land management assessment, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 96–104 (in Russian), https://doi.org/10.21046/2070-7401-2019-16-3-96-104.
  4. Agricultural Water Management for Sustainable Rural Development, Annual Report 2021-22, Intern. Commission on Irrigation and Drainage, India, New Delhi: ICID, 2022, 96 p.
  5. Allred B., Martinez L., Fessehazion M. K., Rouse G., Williamson T. N., Wishart D., Koganti T., Freeland R., Eash N., Batschelet A., Featheringill R., Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage, Agricultural Water Management, 2020, Vol. 232, Art. No. 106036, https://doi.org/10.1016/j.agwat.2020.106036.
  6. Culibrk D., Vukobratovic D., Minic V., Fernandez M. A., Osuna J. A., Crnojevic V., GIS applications for irrigation management, Sensing Technologies for Precision Irrigation, SpringerBriefs in Electrical and Computer Engineering, N. Y., USA: Springer, 2014, pp. 69–93, https://doi.org/10.1007/978-1-4614-8329-8_3.
  7. Filion R., Bernier M., Paniconi C., Chokmani K., Melis M., Soddu A., Talazac M., Lafortune F. X., Remote sensing for mapping soil moisture and drainage potential in semi-arid regions: Applications to the Campidano plain of Sardinia, Italy, Science of the Total Environment, 2016, Vol. 543, Pt. B, pp. 862–876, https://doi.org/10.1016/j.scitotenv.2015.07.068.
  8. Haripavan N., Ramalingeshwararao G. V., Abbaiah G., Sai Krishna G., Assessment of soil erosion in Upper Tungabhadra Sub basin by using universal soil loss equation and geospatial techniques. Proc. Intern. Conf. Remote Sensing for Disaster Management, Rao P. J., Rao K. N., Kubo S. (eds.), Switzerland: Springer Nature, 2019, pp. 173–188, https://doi.org/10.1007/978-3-319-77276-9_17.
  9. Karar M. E., Alotaibi F., Rasheed A., Reyad O., A pilot study of smart agricultural irrigation using unmanned aerial vehicles and IoT-based cloud system, Intern. J. Information Sciences Letters, 2021, Vol. 10, No. 1, pp. 131–140, https://doi.org/10.18576/isl/100115.
  10. King K. W., Williams M. R., Macrae M. L., Fausey N. R., Frankenberger J., Smith D. R., Kleinmann K. A., Brown L. C., Phosphorus transport in agricultural subsurface drainage: A review, J. Environmental Quality, 2015, Vol. 44, No. 2, pp. 467–485, https://doi.org/10.2134/jeq2014.04.0163.
  11. Kratt C. B., Woo D. K., Johnson K. N., Haagsma M., Kumar P., Selker J., Tyler S., Field trials to detect drainage pipe networks using thermal and RGB data from unmanned aircraft, Agricultural Water Management, 2020, Vol. 229, Art. No. 105895, https://doi.org/10.1016/j.agwat.2019.105895.
  12. Ngo Q. H., Kechadi T., Le-Khac N.-A., OAK: Ontology-based knowledge map model for digital agriculture, arXiv.org, 2020, 15 p., https://doi.org/10.48550/arXiv.2011.11442.
  13. Ngo Q. H., Kechadi T., Le-Khac N.-A., Knowledge representation in digital agriculture: A step towards standardised model, Computers and Electronics in Agriculture, 2022, Vol. 199, Art. No. 107127, https://doi.org/10.1016/j.compag.2022.107127.
  14. Nhamo L., Magidi J., Nyamugama A., Clulow A. D., Sibanda M., Chimonyo V. G. P., Mabhaudhi T., Prospects of improving agricultural and water productivity through unmanned aerial vehicles, Agriculture, 2020, Vol. 10, pp. 256–267, https://doi.org/10.3390/agriculture10070256.
  15. Prinds C., Petersen R. J., Greve M. H., Iversen B. V., Locating tile drainage outlets and surface flow in riparian lowlands using thermal infrared and RGB-NIR remote sensing, Geografisk Tidsskrift — Danish J. Geography, 2019, Vol. 119, No. 1, pp. 94–105, https://doi.org/10.1080/00167223.2019.1573408.
  16. Serrano J., Shahidian S., Silva J. M., Evaluation of normalized difference water index as a tool for monitoring pasture seasonal and inter-annual variability in a Mediterranean agro-silvo-pastoral system, Water, 2019, Vol. 11, No. 5, pp. 62–81, https://doi.org/10.3390/w11010062.
  17. Singh A., Hydrological problems of water resources in irrigated agriculture: A management perspective, J. Hydrology, 2016, Vol. 541, pp. 1430–1440, https://doi.org/10.1016/j.jhydrol.2016.08.044.
  18. Singh A., Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques, Ecological Indicators, 2018, Vol. 89, pp. 584–589, https://doi.org/10.1016/j.ecolind.2018.02.041.
  19. Skobelev P. O., Simonova E. V., Smirnov S. V., Budaev D. S., Voshchuk G. Y., Morokov A. L., Development of a knowledge base in the “smart farming” system for agricultural enterprise management, Procedia Computer Science, 2019, Vol. 150, pp. 154–161, https://doi.org/10.1016/j.procs.2019.02.029.
  20. Tilahun T., Seyoum W. M., High-resolution mapping of tile drainage in agricultural fields using unmanned aerial system (UAS) — based radiometric thermal and optical sensors, Hydrology, 2021, Vol. 8, No. 2, Art. No. 8010002, https://doi.org/10.3390/hydrology8010002.
  21. Tlapakova L., Agricultural drainage systems in the Czech landscape — Identification and functionality assessment by means of remote sensing, European Countryside, 2017, Vol. 1, pp. 77–98, https://doi.org/10.1515/euco-2017-0005.
  22. Turi N., Rakonczai J., Bozan C., Condition assessment of subsurface drained areas and investigation of their operational efficiency by field inspection and remote sensing methods, J. Environmental Geography, 2021, Vol. 14, No. 3–4, pp. 14–25, https://doi.org/10.2478/jengeo-2021-0008.
  23. Virnodkar S. S., Pachghare V. K., Patil V. C., Jha S. K., Remote sensing and machine learning for crop water stress determination in various crops: a critical review, Precision Agriculture, 2020, Vol. 1, No. 5, pp. 1121–1155, https://doi.org/10.1007/s11119-020-09711-9.