ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 264-283

Comparison of plume parameters of the Sulak and Terek rivers based on satellite data and in-situ measurements

O.Yu. Lavrova 1 , K.R. Nazirova 1 , Ya.O. Alferyeva 2 , P.D. Zhadanova 3, 1 , A.Ya. Strochkov 1 
1 Space Research Institute RAS, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia
3 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
Accepted: 31.10.2022
DOI: 10.21046/2070-7401-2022-19-5-264-283
The study of coastal areas of the World Ocean under the influence of river flow is an important scientific and practical task. This is because, in addition to suspended and dissolved terrigenous and biogenic substances, anthropogenic pollution may enter shelf areas together with river waters. With the development of domestic tourism in recent years, particularly in the Republic of Dagestan, there is a growing need for ecological monitoring of the resort coastal zone near the city of Makhachkala where the influence of outflows of the Sulak and Terek rivers is strong. Studies of the main parameters of the rivers plumes, their similarities and differences were based on a joint use of satellite remote sensing data and in situ measurements performed simultaneously with satellite observations. High spatial resolution satellite data from Sentinel 2 MSI and Landsat OLI/TIRS sensors were used. In situ measurements were conducted on June 6 and 9, 2022, in the mouth areas of the Terek and Sulak rivers. The main objective was to compare sea water turbidity obtained using a portable turbidity meter and determined from satellite data using different standard algorithms. Simultaneously with CTD sounding, water samples were taken in the near-surface layer to assess suspended matter concentration by weight method and to determine the mineral composition of suspended solids. Analysis of obtained data showed that water turbidity in the Terek plume is significantly higher than in the Sulak plume. The best results in determining turbidity in the mouth zone of the Terek River from satellite data were obtained using Dogliotti algorithm that was developed specifically for waters with high turbidity. For the Sulak plume, none of the algorithms showed turbidity values close to in-situ measurements. This can be explained by the difference of a day between the satellite survey and the corresponding In situ measurements, given that the position of the Sulak plume boundary changes greatly over time. According to the X-ray phase analysis, the mineral composition of the suspended sediments near the Terek and Sulak estuaries is almost the same. It is characterized by approximately equal contents of anhydrous aluminosilicates, clayey and carbonate materials. Significant difference in the suspended sediment composition is manifested in the quantitative ratio of minerals at the plume boundaries. Changes in the mineral composition of suspended sediment are accompanied by significant changes in the turbidity of waters determined both in situ and from satellite data.
Keywords: river plume, turbidity of sea water, total suspended matter, satellite Ocean Color Data, in situ measurements, ACOLITE algorithms, MSI Sentinel 2, OLI/TIRS Landsat 8, -9, Caspian Sea, Terek River, Sulak River
Full text

References:

  1. GOST 31861-2012. Voda. Obshchie trebovaniya k otboru prob (Water. General requirements for sampling), Moscow: Standartinform, 2013, 36 p. (in Russian).
  2. Zav’yalov P. O., Makkaveev P. N., Konovalov B. V., Osadchiev A. A., Khlebopashev P. V., Pelevin V. V., Grabovskii A. B., Izhitskii A. S., Goncharenko I. V., Solov’ev D. M., Polukhin A. A., Hydrophysical and hydrochemical characteristics of the sea areas adjacent to the estuaries of small rivers of the Russian coast of the Black Sea, Oceanology, 2014, Vol. 54, No. 3, pp. 265–280, DOI: 10.1134/S0001437014030151.
  3. Lavrova O. Yu., Mityagina M. I., Kostyanoi A. G., Satellite Methods for Detecting and Monitoring Marine Zones of Ecological Risk, Moscow: IKI RAS, 2016, 335 p. (in Russian).
  4. Lavrova O.Yu., Mityagina M. I., Uvarov I. A., Loupian E. A., Current capabilities and experience of using the See the Sea information system for studying and monitoring phenomena and processes on the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 266–287 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-266-287.
  5. Lisitsyn A. P., Marginal filter of oceans, Okeanologiya, 1994, Vol. 34, No. 5, pp. 735–747 (in Russian).
  6. Loupian E. A., Proshin A. A., Burtsev M. A., Kashnitskii A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobets D. A., Mazurov A. A., Marchenkov V. V., Matveev A. M., Radchenko M. V., Sychugov I. G., Tolpin V. A., Uvarov I. A., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  7. Nazirova K. R., Lavrova O. Yu., Krayushkin E. V., Solov’ev D. M., Zhuk E. V., Alfer’eva Ya. O., Features of river plume parameter determination by in situ and remote sensing methods, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 227–243 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-227-243.
  8. Abascal-Zorrilla N., Vantrepotte V., Huybrechts N., Ngoc D. D., Anthony E. J., Gardel A., Dynamics of the Estuarine Turbidity Maximum Zone from Landsat 8 Data: The Case of the Maroni River Estuary, French Guiana, Remote Sensing, 2020, Vol. 12, Issue 13, Art. No. 2173, https://doi.org/10.3390/rs12132173.
  9. Babin M. A., Morel V., Fournier-Sicre V., Fell F., Stramski D., Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration, Limnology and Oceanography, 2003, Vol. 48, Issue 2, pp. 843–859, https://doi.org/10.4319/lo.2003.48.2.0843.
  10. Berdeal I., Hickey B., Kawase M., Influence of wind stress and ambient flow on high discharge river plume, J. Geophysical Research, 2002, Vol. 107, Issue C9, Art. No. 3130, pp. 13-1–13-24, https://doi.org/10.1029/2001JC000932.
  11. Brockmann C., Doerffer R., Peters M., Kerstin S., Embacher S., Ruescas A., Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters, Proc. Living Planet Symp., 2016, ESA-SP 740, 6 p.
  12. Caballero I., Stumpf R. P., Atmospheric correction for satellite-derived bathymetry in the Caribbean waters: from a single image to multi-temporal approaches using Sentinel 2A/B, Optics Express, 2020, Vol. 28, Issue 8, pp. 11742–11766, https://doi.org/10.1364/OE.390316.
  13. Cai L., Tang D., Li X., Zheng H., Shao W., Remote sensing of spatial-temporal distribution of suspended sediment and analysis of related environmental factors in Hangzhou Bay, China, Remote Sensing Letters, 2015, Vol. 6, No. 8, pp. 597–603, https://doi.org/10.1080/2150704X.2015.1062158.
  14. Chen J., D’Sa E., Cui T., Zhang X., A semi-analytical total suspended sediment retrieval model in turbid coastal waters: A case study in Changjiang River Estuary, Optics Express, 2013, Vol. 21, Issue 11, pp. 13018–13031, https://doi.org/10.1364/oe.21.013018.
  15. Constantin S., Doxaran D., Constantinescu S., Estimation of water turbidity and analysis of its spatio-temporal variability in the Danube River plume (Black Sea) using MODIS satellite data, Continental Shelf Research, 2016, Vol. 112, pp. 14–30, https://doi.org/10.1016/j.csr.2015.11.009.
  16. Devlin M. J., Petus C., da Silva E., Tracey D., Wolff N. H., Waterhouse J., Brodie J., Water Quality and River Plume Monitoring in the Great Barrier Reef: An Overview of Methods Based on Ocean Colour Satellite Data, Remote Sensing, 2015, Vol. 7, No. 10, pp. 12909–12941, https://doi.org/10.3390/rs71012909.
  17. Doerffer R., Schiller H., The MERIS Case 2 water algorithm, Intern. J. Remote Sensing, 2007, Vol. 28, Issue 3–4, pp. 517–535, https://doi.org/10.1080/01431160600821127.
  18. Dogliotti A. I., Ruddick K. G., Nechad B., Doxaran D., Knaeps E., A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuatine waters, Remote Sensing of Environment, 2015, Vol. 156, pp. 157–168, https://doi.org/10.1016/j.rse.2014.09.020.
  19. Doxaran D., Froidefond J. M., Castaing P., A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters, Intern. J. Remote Sensing, 2002, Vol. 23, Issue 23, pp. 5079–5085, https://doi.org/10.1080/0143116021000009912.
  20. Gernez P., Lafon V., Lerouxel A., Curti C., Lubac B., Cerisier S., Barillé L., Toward Sentinel 2 High Resolution Remote Sensing of Suspended Particulate Matter in Very Turbid Waters: SPOT4 (Take5) Experiment in the Loire and Gironde Estuaries, Remote Sensing, 2015, Vol. 7, Issue 8, pp. 9507–9528, https://doi.org/10.3390/rs70809507.
  21. Güttler F. N., Niculescu S., Gohin F., Turbidity retrieval and monitoring of Danube Delta waters using multi-sensor optical remote sensing data: An integrated view from the delta plain lakes to the western–northwestern Black Sea coastal zone, Remote Sensing of Environment, 2013, Vol. 132, pp. 86–101, https://doi.org/10.1016/j.rse.2013.01.009.
  22. Kopelevich O., Sheberstov S., Burenkov V., Vazyulya S., Likhacheva M., Assessment of underwater irradiance and absorption of solar radiation at water column from satellite data, Proc. SPIE, Current Research on Remote Sensing, Laser Probing, and Imagery in Natural Waters, 2007, Vol. 6615, Art. No. 661507, https://doi.org/10.1117/12.740441.
  23. Lavrova O. Yu., Soloviev D. M., Mityagina M. I., Strochkov A. Ya., Bocharova T. Yu., Revealing the influence of various factors on concentration and spatial distribution of suspended matter based on remote sensing data, Proc. SPIE, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2015, Vol. 9638, Art. No. 96380D, https://doi.org/10.1117/12.2193905.
  24. Lavrova O. Yu., Soloviev D. M., Strochkov M. A., Bocharova T. Yu., Kashnitsky A. V., River plumes investigation using Sentinel 2A MSI and Landsat 8 OLI data, Proc. SPIE, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2016, Vol. 9999, Art. No. 99990G, https://doi.org/10.1117/12.2241312.
  25. Lavrova O. Yu., Nazirova K. R., Soloviev M. D., Alferieva O. Ya., Strochkov A. Ya., Bocharova T. Yu., Remote sensing of suspended particulate matter: case studies of the Sulak (Caspian Sea) and the Mzymta (Black Sea) mouth areas, Proc. SPIE, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2021, Vol. 11857, Art. No. 1185705, https://doi.org/10.1117/12.2599809.
  26. Martins V. S., Barbosa C. C. F., De Carvalho L. A. S., Jorge D. S. F., Lobo F. D. L., Novo E. M. L. M., Assessment of Atmospheric Correction Methods for Sentinel 2 MSI Images Applied to Amazon Floodplain Lakes, Remote Sensing, 2017, Vol. 9, Issue 4, Art. No. 322, https://doi.org/10.3390/rs9040322.
  27. Mulligan R. P., Perrie W., Solomon S., Dynamics of the Mackenzie River plume on the inner Beaufort shelf during an open water period in summer, Estuarine, Coastal and Shelf Science, 2010, Vol. 89, Issue 3, pp. 214–220, http://dx.doi.org/10.1016/j.ecss.2010.06.010.
  28. Nazirova K., Alferyeva Y., Lavrova O., Shur Y., Soloviev D., Bocharova T., Strochkov A., Comparison of In Situ and Remote-Sensing Methods to Determine Turbidity and Concentration of Suspended Matter in the Estuary Zone of the Mzymta River, Black Sea, Remote Sensing, 2021, Vol. 13, No. 1, Art. 143, https://doi.org/10.3390/rs13010143.
  29. Nechad B., Ruddick K. G., Park Y., Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters, Remote Sensing of Environment, 2010, Vol. 114, Issue 4, pp. 854–866, https://doi.org/10.1016/j.rse.2009.11.022.
  30. Nechad B., Ruddick K., Schroeder T., Oubelkheir K., Blondeau-Patissier D., Cherukuru N., Brando V., Dekker A., Clementson L. Banks A. C., Maritorena S., Werdell J., Sá C., Brotas V., Caballero de Frutos I., Ahn Y.-H., Salama S., Tilstone G., Martinez-Vicente V., Foley D., McKibben M., Nahorniak J., Peterson T., Siliò-Calzada A., Röttgers R., Lee Z., Peters M., Brockmann C., CoastColour Round Robin data sets: A database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters, Earth System Science Data, 2015, Vol. 7, Issue 2, pp. 319–348, http://doi.org/10.5194/essd-7-319-2015.
  31. Neukermans G., Loisel H., Meriaux X., Astoreca R., McKee D., In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition, Limnology and Oceanography, 2012, Vol. 57, Issue 1, pp. 124–144, http://doi.org/10.4319/lo.2012.57.1.0124.
  32. Ody A., Doxaran D., Vanhellemont Q., Nechad B., Novoa S., Many G., Bourrin F., Verney R., Pairaud I., Gentili B., Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-Tidal River Plume, Remote Sensing, 2016, Vol. 8, Issue 3, Art. No. 245, https://doi.org/10.3390/rs8030245.
  33. Osadchiev A. A., Estimation of river discharge based on remote sensing of a river plume, Proc. SPIE, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2015, Vol. 9638, Art. No. 96380H, http://dx.doi.org/10.1117/12.2192672.
  34. Ou S., Zhang H., Wang D., Dynamics of the buoyant plume off the Pearl River estuary in summer, Environmental Fluid Mechanics, 2009, Vol. 9, Issue 5, pp. 471–492, https://doi.org/10.1007/s10652-009-9146-3.
  35. Ouillon S., Forget P., Froidefond J.-M., Naudin J.-J., Estimating suspended matter concentrations from SPOT data and from field measurements in the Rhone River plume, Marine Technology Society J., 1997, Vol. 31, No. 2, pp. 15–20.
  36. Petus C., Chust G., Gohin F., Doxaran D., Froidefond J.-M., Sagarminaga Y., Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery, Continental Shelf Research, 2009, Vol. 30, Issue 5, pp. 379–392, http://dx.doi.org/10.1016/j.csr.2009.12.007.
  37. Pruszak Z., van Ninh P., Szmytkiewicz M., Ostrowski R., Hydrology and morphology of two river mouth regions (temperate Vistula Delta and subtropical Red River Delta), Oceanologia, 2005, Vol. 47, No. 3, pp. 365–385.
  38. Van Der Linde D. W., Protocol for determination of total suspended matter in oceans and coastal zones, JRC Technical Note I.1998.98.182, 1998.
  39. Vanhellemont Q., Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel 2 archives, Remote Sensing of Environment, 2019, Vol. 225, pp. 175–192, https://doi.org/10.1016/j.rse.2019.03.010.
  40. Vanhellemont Q., Ruddick K., Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat 8, Remote Sensing of Environment, 2015, Vol. 161, pp. 89–106, https://doi.org/10.1016/j.rse.2015.02.007.
  41. Warren M. A., Simis S. G. H., Martinez-Vicente V., Poser K., Bresciani M., Alikas K., Spyrakos E., Giardino C., Ansper A., Assessment of atmospheric correction algorithms for the Sentinel 2A MultiSpectral Imager over coastal and inland waters, Remote Sensing of Environment, 2019, Vol. 225, pp. 267–289, https://doi.org/10.1016/j.rse.2019.03.018.
  42. Warrick J. A., DiGiacomo P. M., Weisberg S. B., Nezlin N. P., Mengel M., Jones B. H., Ohlmann J. C., Washburn L., Terrill E. J., Farnsworth K. L., River plume patterns and dynamics within the Southern California Bight, Continental Shelf Research, 2007, Vol. 27, Issue 19, pp. 2427–244, https://doi.org/10.1016/j.csr.2007.06.015.