ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 19-27

Experimental study of the dielectric properties of dry snow with large particles at a frequency of 37.5 GHz

V.A. Golunov 1 
1 Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow Region, Russia
Accepted: 07.10.2022
DOI: 10.21046/2070-7401-2022-19-5-19-27
In this work, using the prism method at a frequency of 37.5 GHz, an experimental study was made of the dependence of the refractive index of dry snow on bulk density in the range of its values 0.16–0.535 and particle sizes up to 10 mm. The studied snow samples had both self-formed and destroyed structures. In addition, various combinations of a mixture of pieces of fine-grained snow crust and large fragments of icicles were used. A comparative analysis of the experimental data obtained in this work with the known data showed that the dependence of the real part of the complex permittivity of dry snow on the bulk density is described by the Polder – van Santen formula, regardless of the snow structure, with particle sizes at least comparable with the wavelength.
Keywords: dry snow, refractive index, bulk density, wavelength-comparable ice particles, experiment, prism method
Full text


  1. Apletalin V. N., Golunov V. A., Chigryai E. E., Dielectric properties of ice and snow in the millimeter wave range, Trudy 1-i Vsesoyuznoi shkoly-simpoziuma po raspredeleniyu millimetrovykh i submillimetrovykh voln v atmosfere (Proc. 1st All-Union School-Symp. Propagation of Millimeter and Submillimeter Waves in the Atmosphere), Moscow, 1983, pp. 156–160 (in Russian).
  2. Golunov V. A., Coherent attenuation of electromagnetic waves by weakly absorbing dense random discrete (snow-like) media, J. Communications Technology and Electronics, 2015, Vol. 60, No. 1, pp. 29–34. DOI: 10.1134/S1064226915010052.
  3. Golunov V. A., Korotkov V. A., Sukhonin E. V., Scattering effects upon millimeter waves emission from atmosphere and snow cover, Itogi nauki i tekhniki. Ser. “Radiotekhnika”, Moscow: VINITI, 1990, Vol. 41, pp. 68–136 (in Russian).
  4. Golunov V. A., Gordeev K. V., Rykov K. N., Passive measurements of the refractive index of liquid nitrogen and free-flowing substances by the prism method in the millimeter wavelength range, Radioelektronika. Nanosistemy. Informatsionnye tekhnologii, 2021, Vol. 13, No. 4, pp. 435–442 (in Russian), DOI: 10.17725/rensit.2021.13.435.
  5. Kuzmin P. P., Fizicheskie svoistva snezhnogo pokrova (Physical properties of snow cover), Leningrad: Gidrometeoizdat, 1957, 178 p.
  6. Odelevskii V. I., Calculation of the generalized conductivity of heterogeneous systems, Zhurnal tekhnicheskoi fiziki, 1951, Vol. 21, No. 6, pp. 678–685 (in Russian).
  7. Ryzhov Yu., Tamoikin V., Tatarskii V., Spatial dispersion of inhomogeneous media, Zhurnal eksperimental’noi i teoreticheskoi fiziki, 1965, Vol. 21, pp. 433–438 (in Russian).
  8. Ambach W., Denoth A., Studies on the dielectric properties of snow, Zeitschrift für Gletscherkunde und Glazialgeologie, 1972, Vol. 8, pp. 113–123.
  9. Colbeck S. C., The geometry and permittivity of snow at high frequencies, J. Applied Physics, 1982, Vol. 53, No. 6, pp. 4495–4500.
  10. Cumming W., The dielectric properties of ice and snow at 3.2 cm, J. Applied Physics, 1952, Vol. 23, pp. 768–773.
  11. Denoth A., Effect of grain geometry on electrical properties of snow at frequencies up to 100 MHz, J. Applied Physics, 1982, Vol. 53, pp. 7496–7501.
  12. Evans S., Dielectric properties of ice and snow: A review, J. Glaciology, 1965, No. 5, pp. 773–792.
  13. Hallikainen M., Ulaby F., Abdelrazik M., Dielectric properties of snow in 3 to 37 GHz range, IEEE Trans. Antennas and Propagation, 1986, Vol. AP-34, No. 11, pp. 1329–1340.
  14. Matzler C., Microwave permittivity of dry snow, IEEE Trans. Geoscience and Remote Sensing, 1996, Vol. 34, No. 2, pp. 573–581.
  15. Matzler C., Wegmuller U., Dielectric properties of fresh-water ice at microwave frequencies, J. Physics D: Applied Physics, 1987, Vol. 20, pp. 1623–1630.
  16. Polder D., van Santen J. H., The effective permeability of mixtures of solids, Physica D: Nonlinear Phenomena, 1946, Vol. 12, No. 5, pp. 257–271.
  17. Sihvola A., Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Ser., London, 1999, Vol. 47, 284 p.
  18. Sihvola A., Kong J. A., Effective permittivity of dielectric mixtures, IEEE Trans. Geoscience and Remote Sensing, 1988, Vol. 26, No. 4, pp. 420–429.
  19. Sihvola A., Nyfors E., Tiuri M., Mixing formulae and experimental results for the dielectric constant of snow, J. Glaciology, 1985, Vol. 31, No. 108, pp. 163–170.
  20. Stogryn A., The bilocal approximation for the effective dielectric constant of an isotropic random medium, IEEE Trans. Antennas and Propagation, 1984, Vol. AP-32, No. 5, pp. 517–520.
  21. Sugiyama S., Enomoto H., Fujita S., Fukui K., Nakazawa F., Holmilund P., Dielectric permittivity of snow measured along the route traversed in the Japanese–Swedish Antarctic Expedition 2007/08, Annals of Glaciology, 2010, Vol. 51, No. 55, pp. 9–15.
  22. Tiuri M. T., Sihvola A. H., Nyfors E. G., Hallikainen M. T., The complex dielectric constant of snow at microwave frequencies, IEEE J. Oceanic Engineering, 1984, Vol. 9, No. 5, pp. 377–382.
  23. Tsang L., Kong J. A., Scattering of electromagnetic waves for random media with strong permittivity fluctuations, Radio Science, 1981, Vol. 16, No. 3, pp. 303–320.
  24. Tsang L., Kong J. A., Newton R. W., Application of strong fluctuation random medium theory to scattering of electromagnetic waves from a half-space of dielectric mixture, IEEE Trans. Antennas and Propagation, 1982, Vol. AP-30, No. 2, pp. 292–302.
  25. Tsang L., Kong J. A., Shin R., Theory of Microwave Remote Sensing, New York: Wiley-Interscience, 1985, 632 p.
  26. Zhuck N. P., Schuemann K., Shulga S. N., Effective permittivity of a statistically inhomogeneous medium with strong permittivity fluctuations, J. Electromagnetic Waves and Applications, 2004, Vol. 18, No. 3, pp. 357–359.