ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 235-245

Application of UAV measurements to assess the dynamics of the marginal ice zone in the Kara Sea

V.R. Zhuk 1 , I.E. Kozlov 1 , A.A. Kubryakov 1 , D.M. Solovyov 1 , A.A. Osadchiev 2, 3 , N.B. Stepanova 2, 3 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
2 Shirshov Institute of Oceanology RAS, Moscow, Russia
3 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
Accepted: 03.10.2022
DOI: 10.21046/2070-7401-2022-19-5-235-245
Based on a combined analysis of measurements obtained from unmanned aerial vehicle (UAV), spaceborne synthetic aperture radar (SAR) and in situ measurements, an assessment of the small-scale and submesoscale dynamics in the marginal ice zone (MIZ) in two regions of the Kara Sea was made. The measurements were performed at two ice polygons located in the eastern part of the Kara Sea in August 2021 during the 58th cruise of the RV Akademik Ioffe. The depths of the brackish layer varied from 0.5 to 2.5 m. Analysis of near-surface salinity measurements from ship-mounted flow analyzer showed the meandering of brackish areas associated with uneven ice melting. Based on spaceborne SAR observations, eddy features in the MIZ and the evolution of the MIZ were described. Possibilities of using serial UAV for studying the small-scale dynamics of the MIZ are demonstrated. A pronounced anticyclonic eddy was found at one of the polygons in the field of drifting ice. The values of the ice velocity modulus in the anticyclone calculated from UAV measurements reached 0.7 m/s and were primarily associated with the dynamics of the upper ocean layer, and not with the wind effect. An analysis of the reconstructed ice drift kinematic characteristics from UAV data and wind measurements at the stations showed the key role of the ageostrophic component in the ice drift velocity field.
Keywords: ice drift, small-scale variability, submesoscale dynamics, marginal ice zone, unmanned aerial vehicles, sea surface satellite radar, Kara Sea, Arctic Ocean
Full text

References:

  1. Artamonova A. V., Kozlov I. E., Zimin A. V., Characteristics of ocean eddies in the Beaufort and Chukchi Seas from spaceborne radar observations, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 203–210 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-203-210.
  2. Konik A. A., Zimin A. V., Atadzhanova O. A., Quantitative estimations of the variability of characteristics of the temperature of the sea surface in the front of the frontal zone of the Kara Sea, Fundamentalnaya i prikladnaya gidrofizika, 2019, Vol. 12, No. 1, pp. 54–61 (in Russian), DOI: 10.7868/S2073667319010076.
  3. Kubryakov A. A., Lishaev P. N., Chepyzhenko A. I., Aleskerova A. A., Kubryakova E. A., Medvedeva A. V., Stanichnyi S. V., Impact of submesoscale eddies on the transport of suspended matter in the coastal zone of Crimea on the base of drones, satellite and in situ measurements, Okeanologiya, 2021, Vol. 61, No. 2, pp. 182–197 (in Russian), DOI: 10.31857/S0030157421020106.
  4. Kuskova E. G., Osadchiev A. A., Frey D. I., Stepanova N. B., Influence of sea ice melting on formation of the freshened surface layer in the Kara Sea, 10-ya Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Morskie issledovaniya i obrazovanie” (10th Intern. Scientific-Practical Conf. “MARESEDU-2021”), Book of abst., Tver, 25–29 Oct., 2021, Tver: PoliPRESS, 2021, pp. 242–246 (in Russian).
  5. Marchenko A. V., Dianskii N. A., Onishchenko D. A., Chumakov M. M., Nikitin M. A., Fomin V. V., Marchenko N. A., Study of ice drift and the evolution of the consolidated layer of hummocks in the northwestern region of the Barents Sea, Trudy Gidrometeorologicheskogo nauchno-issledovatelskogo tsentra Rossiiskoi Federatsii, 2016, No. 361, pp. 231–260 (in Russian).
  6. Novikov B. A., Kubryakov A. A., Fedorov S. V., Recovery of bathymetry on the base of UAV onboard camera in coastal water area of the Black Sea, Vserossiiskaya nauchnaya konferentsiya “Morya Rossii: God nauki i tekhnologii v RF — Desyatiletie nauk ob okeane OON” (The All-Russia Open Conf. “The Seas of Russia: Year of Science and Technology in the RF — United Nations Decade of Ocean Science for Sustainable Development”), Book of Abstr., Sevastopol, 20–24 Sept., 2021, Sevastopol: Morskoi gidrofizicheskii institut RAN, 2021, pp. 289–290 (in Russian).
  7. Pankeeva T. V., Mironova N. V., Novikov B. A., Experience in mapping bottom vegetation (for example of Laspi Bay, Black Sea), Geopolitika i ekogeodinamika regionov, 2020, Vol. 6, No. 4, pp. 154–169 (in Russian), DOI: 10.37279/2309-7663-2020-6-2-154-169.
  8. Atadzhanova O. A., Zimin A. V., Romanenkov D. A., Kozlov I. E., Satellite radar observations of small eddies in the White, Barents and Kara Seas, Physical Oceanography, 2017, Vol. 2, pp. 75–83, DOI: 10.22449/1573-160X-2017-2-75-83.
  9. Bekryaev R., Polyakov I., Alexeev V., Role of polar amplification in long-term surface air temperature variations and modern Arctic warming, J. Climate, 2010, Vol. 23, pp. 3888–3906, DOI: 10.1175/2010JCLI3297.1.
  10. Bergsma E., Almar R., Almeida L. P., Sall M., On the operational use of UAVs for video-derived bathymetry, Coastal Engineering, 2019, Vol. 152(103527), DOI: 10.1016/j.coastaleng.2019.103527.
  11. Cole S. T., Toole J. M., Lele R., Timmermans M.-L., Gallaher S. G., Stanton T. P., Shaw W. J., Hwang B., Maksym T., Wilkinson J. P., Ortiz M., Graber H., Rainville L., Petty A. A., Farrell S. L., Richter-Menge J. A., Haas C., Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer, Elementa Science of the Anthropocene, 2017, Vol. 5, No. 55, DOI: 10.1525/elementa.241.
  12. Kozlov I. E., Atadzhanova O. A., Eddies in the marginal ice zone of Fram Strait and Svalbard from spaceborne SAR observations in winter, Remote Sensing, 2022, Vol. 14, Art. No. 134, 19 p., DOI: 10.3390/rs14010134.
  13. Kozlov I. E., Artamonova A. V., Manucharyan G. E., Kubryakov A. A., Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones, J. Geophysical Research: Oceans, 2019, Vol. 124, pp. 6601–6616, DOI: 10.1029/2019JC015113.
  14. Kozlov I. E., Plotnikov E., Manucharyan G., Brief Communication: Mesoscale and submesoscale dynamics in the marginal ice zone from sequential synthetic aperture radar observations, The Cryosphere, 2020, Vol. 14, pp. 2941–2947, DOI: 10.5194/tc-14-2941-2020.
  15. Lopez-Acosta R., Schodlok M. P., Wilhelmus M. M., Ice Floe Tracker: An algorithm to automatically retrieve Lagrangian trajectories via feature matching from moderate-resolution visual imagery, Remote Sensing of Environment, 2019, Vol. 234(111406), DOI: 10.1016/j.rse.2019.111406.
  16. Manucharyan G. E., Thompson A. F., Submesoscale sea ice‐ocean interactions in marginal ice zones, J. Geophysical Research: Oceans, 2017, Vol. 122, pp. 9455–9475, DOI: 10.1002/2017JC012895.
  17. Manucharyan G. E., Lopez Acosta R., Wilhelmus M. M., Spinning ice floes reveal intensification of mesoscale eddies in the western Arctic Ocean, Scientific Reports, 2022, Vol. 12, No. 7070, DOI: 10.1038/s41598-022-10712-z.
  18. Olason E., Notz D., Drivers of variability in Arctic sea-ice drift speed, J. Geophysical Research: Oceans, 2014, Vol. 119, pp. 5755–5775, DOI: 10.1002/2014JC009897.
  19. Selivanova J., Verezemskaya P., Tilinina N., Gulev S., Dobrolyubov S., The importance of the sea ice marginal zone for the surface turbulent heat fluxes in Arctic on the basis of NCEP CFSR reanalysis, Russian J. Earth Sciences, 2021, Vol. 21(ES2003), DOI: 10.2205/2020ES000744.
  20. Spreen G., Kwok R., Menemenlis D., Trends in Arctic sea ice drift and role of wind forcing: 1992–2009, Geophysical Research Letters, 2011, Vol. 38, Issue 19, Art. No. L19501, DOI: 10.1029/2011GL048970.
  21. Toyota T., Haas C., Tamura T., Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter, Deep Sea Research Part II: Topical Studies in Oceanography, 2011, Vol. 58(9–10), pp. 1182–1193, DOI: 10.1016/j.dsr2.2010.10.034.
  22. Wang M., König M., Oppelt N., Partial Shape Recognition for Sea Ice Motion Retrieval in the Marginal Ice Zone from Sentinel-1 and Sentinel-2, Remote Sensing, 2021, Vol. 13(21), Art. No. 4473, DOI: 10.3390/rs13214473.
  23. Yurovsky Y. Y., Kubryakov A. A., Plotnikov E. V., Lishaev P. N., Submesoscale Currents from UAV: An Experiment over Small-Scale Eddies in the Coastal Black Sea, Remote Sensing, 2022, Vol. 14, Art. No. 3364, DOI: 10.3390/rs14143364.