ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 303-315

Response of the ionosphere – thermosphere system over the mid-latitude region of Eurasia to geomagnetic storms in March 2012

M.A. Chernigovskaya 1 , B.G. Shpynev 1 , D.S. Khabituev 1 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 14.10.2022
DOI: 10.21046/2070-7401-2022-19-5-303-315
A study of variations in ionospheric and atmospheric parameters in the Northern Hemisphere during a series of magnetic storms in March 2012 was performed based on the analysis of data from the Eurasian mid-latitude ionosonde chain and GUVI TIMED satellite measurements of atmospheric components at altitudes of the thermosphere (ionosphere) above ~100 km. The longitudinal inhomogeneity of the ionospheric ionization over the mid-latitude region of Eurasia at the heights of the maximum F2-layer of the ionosphere is shown. The spatio-temporal variations in the [O]/[N2] density ratio in the thermospheric gas column above ~100 km are analyzed according to GUVI TIMED satellite measurements for the Northern Hemisphere in whole and additionally for the middle latitudes of the Eastern Hemisphere. The complex physics of the long magnetically disturbed period in March 2012 with switching between the positive and negative phases of the ionospheric storm in the same period of the magnetic storm for different spatial regions is emphasized. Possible mechanisms for changing the effects of an ionospheric storm under the conditions of a series of magnetic storms in March 2012 are discussed.
Keywords: chain of ionosondes, ionospheric disturbances, geomagnetic storm, variations in the gas composition of the thermosphere
Full text

References:

  1. Polyakov V. M., Shchepkin L. A., Kazimirovsky E. S., Kokourov V. D., Ionosfernye protsessy (Ionospheric processes), Novosibirsk: Nauka, 1968, 535 p. (in Russian).
  2. Ratovsky K. G., Klimenko M. V., Klimenko V. V., Chirik N. V., Korenkova N. A., Kotova D. S., After-effects of geomagnetic storms: statistical analysis and theoretical explanation, J. Solar-Terrestrial Physics, 2018, Vol. 4, No. 4, pp. 26–32, DOI: 10.12737/stp-44201804.
  3. Chernigovskaya M. A., Shpynev B. G., Khabituev D. S., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Kouba D., Mielich J., Longitudinal variations of geomagnetic and ionospheric parameters during severe magnetic storms in 2015, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 336–347 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-336-347.
  4. Chernigovskaya M. A., Shpynev B.G ., Khabituev D. S., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Melich J., Studying the response of the mid-latitude ionosphere of the northern hemisphere to magnetic storms in March 2012, J. Solar-Terrestrial Physics, 2022, Vol. 8, Issue 4. (In press.)
  5. Astafyeva E. I., Dayside ionospheric uplift during strong geomagnetic storms as detected by the CHAMP, SAC-C, TOPEX and Jason-1 satellites, Advances in Space Research, 2009, Vol. 43, pp. 1749–1756, DOI: 10.1016/j.asr.2008.09.036.
  6. Belehaki A., Kutiev I., Marinov P., Tsagouri I., Koutroumbas K., Elias P., Ionospheric electron density perturbations during the 7–10 March 2012 geomagnetic storm period, Advances in Space Research, 2017, Vol. 59, pp. 1041–1056, DOI: 10.1016/j.asr.2016.11.031.
  7. Buonsanto M. J., Ionospheric storms — a review, Space Science Reviews, 1999, Vol. 88, pp. 563–601.
  8. Chernigovskaya M. A., Shpynev B. G., Yasyukevich A. S., Khabituev D. S., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Kouba D., Mielich J., Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations, Advances in Space Research, 2021, Vol. 67, No. 2, pp. 762–776, DOI: 10.1016/j.asr.2020.10.028.
  9. Christensen A. B., Paxton L. J., Avery S., Craven J., Crowley G., Humm D. C., Kil H., Meier R. R., Meng C.-I., Morrison D., Ogorzalek B. S., Straus P., Strickland D. J., Swenson R. M., Walterscheid R. L., Wolven B., Zhang Y., Initial observations with the Global Ultraviolet Imager (GUVI) on the NASA TIMED satellite mission, J. Geophysical Research, 2003, Vol. 108, No. A12, Art. No. 1451, 16 p., DOI: 10.1029/2003JA009918.
  10. Danilov A. D., Long-term trends of foF 2 independent on geomagnetic activity, Annales Geophysicae, 2003, Vol. 21, No. 5, pp. 1167–1176.
  11. Danilov A. D., Ionospheric F-region response to geomagnetic disturbances, Advances in Space Research, 2013, Vol. 52, pp. 343–366, DOI: 10.1016/j.asr.2013.04.019.
  12. Dudok de Wit T., Watermann J., Solar forcing of the terrestrial atmosphere, Comptes Rendus Geoscience, 2009, Vol. 342, No. 4–5, pp. 259–272, DOI: 10.1016/j.crte.2009.06.001.
  13. Fuller-Rowell T. J., Codrescu M. V., Moffett R. J., Quegan S., Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophysical Research, 1994, Vol. 99, pp. 3893–3914.
  14. Habarulema J. B., Katamzi Z. T., Yizengaw E., First observations of poleward large-scale traveling ionospheric disturbances over the African sector during geomagnetic storm conditions, J. Geophysical Research, 2015, Vol. 120, pp. 6914–6929, DOI: 10.1002/2015JA021066.
  15. Habarulema J. B., Katamzi Z. T., Yizengaw E., Yamazaki Y., Seemala G., Simultaneous storm time equatorward and poleward large-scale TIDs on a global scale, Geophysical Research Letters, 2016, Vol. 43, pp. 6678–6686, DOI: 10.1002/2016GL069740.
  16. Klimenko M. V., Klimenko V. V., Ratovsky K. G., Goncharenko L. P., Fagundes R. R., de Jesus R., de Abreu A. J., Vesnin A. M., Numerical modeling of ionospheric effects in the middle- and lowlatitude F region during geomagnetic storm sequence of 9–14 September 2005, Radio Science, 2011, Art. No. RS0D03, DOI: 10.1029/2010RS004590.
  17. Klimenko M. V., Klimenko V. V., Despirak I. V., Zakharenkova I. E., Kozelov B. V., Cherniakov S. M., Andreeva E. S., Tereshchenko E. D., Vesnin A. M., Korenkova N. A., Gomonov A. D., Vasiliev E. B., Ratovsky K. G., Disturbances of the thermosphere-ionosphere-plasmasphere system and auroral electrojet at 30E longitude during the St. Patrick’s Day geomagnetic storm on 17–23 March 2015, J. Atmospheric and Solar-Terrestrial Physics, 2018, Vol. 180, pp. 78–92, DOI: 10.1016/j.jastp.2017.12.017.
  18. Laštovička J., Monitoring and forecasting of ionospheric space weather effects of geomagnetic storms, J. Atmospheric and Solar-Terrestrial Physics, 2002, Vol. 64, pp. 697–705.
  19. Liou K., Newell P. T., Anderson B. J., Zanetti L., Meng C.-I., Neutral composition effects on ionospheric storms at middle and low latitudes, J. Geophysical Research, 2005, Vol. 110, Art. No. A05309, DOI: 10.1029/2004JA010840.
  20. Loewe C. A., Prölss G. W., Classification and mean behavior of magnetic storms, J. Geophysical Research, 1997, Vol. 102, No. A7, pp. 14209–14213.
  21. Matsushita S., A study of the morphology of ionospheric storms, J. Geophysical Research, 1959, Vol. 64, No. 3, pp. 305–321, DOI: 10.1029/JZ064i003p00305.
  22. Mayr H. G., Volland H., Magnetic storm effects in the neutral composition, Planetary and Space Science, 1972, Vol. 20, pp. 379–393.
  23. Prölss G. W., Ionospheric F-region storms, In: Handbook of atmospheric electrodynamics, Volland H. (ed.), Boca Raton: CRC Press, 1995, Vol. 2, Ch. 8, pp. 195–248.
  24. Prölss G. W., Werner S., Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms, J. Geophysical Research, 2002, Vol. 107, No. A2, p. 1016, DOI: 10.1029/2001JA900126.
  25. Rishbeth H., How the thermospheric circulation affects the ionospheric F 2-layer, J. Atmospheric and Solar-Terrestrial Physics, 1998, Vol. 60, pp. 1385–1402.
  26. Schunk R. W., Sojka J. J., Ionosphere-thermosphere space weather issues, J. Atmospheric and Solar-Terrestrial Physics, 1996, Vol. 58, pp. 1527–1574, DOI: 10.1016/ 0021-9169(96)00029-3.
  27. Seaton M. J., A possible explanation of the drop in F-region critical densities accompanying major ionospheric storms, J. Atmospheric Terrestrial Physics, 1956, Vol. 8, pp. 122–124.
  28. Shpynev B. G., Zolotukhina N. A., Polekh N. M., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J., The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain, J. Atmospheric and Solar-Terrestrial Physics, 2018, Vol. 180, pp. 93–105, DOI: 10.1016/j.jastp.2017.10.014.
  29. Tsurutani B., Mannucci A., Iijima B., Abdu M. A., Sobral J. H. A., Gonzalez W., Guarneri F., Tsuda T., Saito A., Yumoto K., Fejer B., Fuller-Rowell T. J., Kozyra J., Foster J. C., Coster A., Vasyliunas V. M., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophysical Research, 2004, Vol. 109, Art. No. A08302, DOI: 10.1029/2003JA010342.
  30. Tsurutani B., Echer E., Shibata K., Verkhoglyadova O., Mannucci A., Gonzalez W., Kozyra J., Pätzold M., The interplanetary causes of geomagnetic activity during the 7–17 March 2012 interval: a CAWSES II overview, J. Space Weather and Space Climate, 2014, Vol. 4, No. A02. DOI: 10.1051/swsc/2013056.
  31. Verkhoglyadova O. P., Tsurutani B. T., Mannucci A. J., Mlynczak M. G., Hunt L. A., Paxton L. J., Komjathy A., Solar wind driving of ionosphere-thermosphere responses in three storms near St. Patrick’s Day in 2012, 2013, and 2015, J. Geophysical Research, 2016, Vol. 121, pp. 8900–8923, DOI: 10.1002/2016JA022883.