ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 222-234

Topographic waves in the Kuril region

V.S. Travkin 1 , T.V. Belonenko 1 , A.V. Kochnev 2 
1 Saint Petersburg State University, Saint Petersburg, Russia
2 Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russia
Accepted: 30.08.2022
DOI: 10.21046/2070-7401-2022-19-5-222-234
The paper analyzes various types of topographic waves in the Kuril region. The following topographic structures are considered: shelf, deep-water trench, and topographic elevation eastward of the trench. It is shown that waves on topographic slopes manifest themselves in the form of regular movement of mesoscale vortices. Anticyclones move to the southwest in the form of shelf waves along the shelf area, as well as in the form of trench waves spreading to the northeast on the sea side of the Kuril trench. On the inner side of the trench and the slope of the topographic elevation behind the trench, topographic waves appear mainly in the form of cyclones moving southwest. Comparison with different factors affecting the propagation of low-frequency waves showed that the contribution of topography is dominant, several orders of magnitude higher than the contribution of the β-effect and shear flow. Topographic waves have a barotropic component, manifested in the orderly movement of vortices along isobaths located at depths of more than 5000 m.
Keywords: Kuril region, Kuril trench, topographic waves, shelf waves, trench waves, mesoscale vortices
Full text


  1. Belonenko T. V., Observations of Rossby waves in the northwestern Pacific, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 209–215 (in Russian).
  2. Belonenko T. V., Volkov D. L., Koldunov A. V., Shelf waves in the Beaufort Sea in a high-resolution ocean model, Oceanology, 2018, Vol. 58, No. 6, pp. 778–785,
  3. Bulatov N. V., Lobanov V. B., Investigation of mesoscale eddies to the east of the Kuril Islands on the base of meteorological satellites data, Issledovanie Zemli iz kosmosa, 1983, No. 3, pp. 40–47 (in Russian).
  4. Gnevyshev V. G., Frolova A. V., Belonenko T. V., Kubryakov A. A., Sobko Yu. V., Interaction between Rossby Waves and a Jet Flow: Basic Equations and Verification for the Antarctic Circumpolar Current, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55(5), pp. 412–422, DOI: 10.1134/S0001433819050074.
  5. Gnevyshev V. G., Frolova A. V., Koldunov A. V., Belonenko T. V., Topographic Effect for Rossby Waves on a Zonal Shear Flow, Fundamentalnaya i prikladnaya gidrofizika, 2021, Vol. 14, No. 1, pp. 4–14 (in Russian), DOI: 10.7868/S2073667321010019.
  6. Efimov V. V., Rabinovich A. B., On resonant tidal currents and their connection with continental shelf waves in the northwestern Pacific Ocean, Izvestiya Akademii nauk SSSR. Fizika atmosfery i okeana, 1980, Vol. 16, No. 10, pp. 1091–1101 (in Russian).
  7. Efimov V. V., Kulikov E. A., Rabinovich A. B., Fine I. V., Waves in the ocean boundary regions, Leningrad, 1985, 250 p. (in Russian).
  8. Lappo S. S., Srednemasshtabnye dinamicheskie protsessy okeana, vozbuzhdaemye atmosferoi (Medium-scale dynamic processes of the ocean excited by the atmosphere), Moscow: Nauka, 1979, 181 p. (in Russian).
  9. Le Blond P. H., Mysak L. A., Waves in the ocean, Amsterdam; Oxford; New York: Elsevier Scientific Publ. Company, 1978, 602 p.
  10. Nezlin M. V., Rossby solitons (Experimental investigations and laboratory model of natural vortices of the Jovian Great Red Spot type), Soviet Physics Uspekhi, 1986, Vol. 29, pp. 807–842, DOI: 10.1070/PU1986v029n09ABEH003490.
  11. Prants S. V., Trench Eddies in the Northwest Pacific: An Overview, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, No. 4, pp. 341–353, DOI: 10.1134/S0001433821040216.
  12. Samko E. V., Bulatov N. V., Kapshitar A. V., Characteristics of anticyclonic vortices of various origin and their influence on the fishing of saury and Bartram squid southeast of Hokkaido Island, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2007, Vol. 1, pp. 357–369 (in Russian).
  13. Sandalyuk N. V., Belonenko T. V., Koldunov A. V., Shelf Waves in the Great Australian Bight Based on Satellite Altimetry Data, Izvestiya, Atmospheric and Oceanic Physics, 2021, Vol. 57, No. 9, pp. 1117–1126,
  14. Buchwald V. T., Adams J. K., The Propagation of Continental Shelf Waves, Proc. Royal Society of London. Ser. A. Mathematical and Physical Sciences, 1968, Vol. 305, No. 1481, pp. 235–250, DOI: 10.1098/rspa.1968.0115.
  15. Chelton D. B., Schlax M. G., Samelson R. M., Global observations of nonlinear mesoscale eddies, Progress in Oceanography, 2011, Vol. 91, pp. 167–216, DOI: 10.1016/j.pocean.2011.01.002.
  16. Gnevyshev V. V., Frolova A. V., Belonenko T. V., Topographic Effect for Rossby Waves on Non-Zonal Shear Flow, Water Resources, 2022, Vol. 49, No. 2, pp. 240–248, DOI: 10.1134/S0097807822020063.
  17. Longuet-Higgins M. S. (1968a), On the trapping of waves along a discontinuity of depth in a rotating ocean, J. Fluid Mechanics, 1968, Vol. 31(3), pp. 417–434, DOI: 10.1017/s0022112068000236.
  18. Longuet-Higgins M. S. (1968a), Double Kelvin waves with continuous depth profiles, J. Fluid Mechanics, 1968, Vol. 34(01), pp. 49–80, DOI: 10.1017/s002211206800176x.
  19. Mysak L. A., Leblond P. H., Emery W. J., Trench Waves, J. Physical Oceanography, 1979, Vol. 9(5), pp. 1001–1013, DOI: 10.1175/1520-0485(1979)009<1001:TW>2.0.CO;2.
  20. Rabinovich A. B., Thomson R. E., Evidence of Diurnal Shelf Waves in Satellite-Tracked Drifter Trajectories off the Kuril Islands, J. Physical Oceanography, 2001, Vol. 31, pp. 2650–2668, DOI: 10.1175/1520-0485(2001)031<265.
  21. Rabinovich A. B., Thomson R. E., Bograd S. J., Drifter Observations of Anticyclonic Eddies near Bussol’ Strait, the Kuril Islands, J. Oceanography, 2002, Vol. 58, pp. 661–671.