ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 9-18

Using remote sensing data assimilation into wildfire model to evaluate fire front position

S.A. Khvostikov 1, 2 , S.А. Bartalev 1, 2 
1 Space Research Institute RAS, Moscow, Russia
2 Center for Forest Ecology and Productivity RAS, Moscow, Russia
Accepted: 30.08.2022
DOI: 10.21046/2070-7401-2022-19-5-9-18
Fire front position and dynamics is of critical importance for evaluation of potential fire response measures. Low resolution remote sensing data used to detect burning fires cannot enable determining fire front position with sufficient accuracy. This article presents a method to evaluate fire front position using remote sensing data assimilation into a wildfire model. Unlike previous works on data assimilation, the proposed method was tested on multiple big multi-day wildfires. The proposed method uses probabilistic wildfire spread model, MODIS hotspots and data assimilation approach based on optimization of fire front position that accounts for uncertainties of both model and remote sensing data. The method uses a set of normals to fire front and estimates predicted and remote-sensing-derived fire spread along them, evaluating the real fire front position by minimizing its deviation from the two estimates. This method was applied to 230 fires on the territory of Russia. The evaluated fire front position showed considerable improvement over the original MODIS data.
Keywords: wildfires, modelling, MODIS, Landsat, data assimilation
Full text

References:

  1. Bartalev S. A., Egorov V. A., Efremov V. Yu., Loupian E. A., Stytsenko F. V., Flitman E. V., Integrated burnt area assessment based on combine use of multi-resolition MODIS and Landsat-TM/ETM+ satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 9–27 (in Russian).
  2. Loupian E. A., Bartalev S. A., Balashov I. V., Egorov V. A., Ershov D. V., Kobets D. A., Senko K. S., Stytsenko F. V., Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175 (in Russian), DOI:10.21046/2070-7401-2017-14-6-158-175.
  3. Loupian E. A., Proshin A. A., Bourtsev M. A., Kashnitskii A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobets D. A., Mazurov A. A., Marchenkov V. V., Matveev A. M., Radchenko M. V., Sychugov I. G., Tolpin V. A., Uvarov I. A., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  4. Ponomarev E. I., Kharuk V. I., Yakimov N. D., Current results and perspectives of wildfire satellite monitoring in Siberia, Sibirskii lesnoi zhurnal, 2017, No. 5, pp. 25–36 (in Russian), DOI: 10.15372/SJFS20170503.
  5. Khvostikov S. A., Bartalev S. A., Use of remote sensing data in wildfire modelling, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 9–27 (in Russian), DOI: 10.21046/2070-7401-2021-18-5-9-27.
  6. Khvostikov S. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Loupian E. A., Regional scale optimization of wildfire model parameters and modelling of wildfire dynamic using remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 91–100 (in Russian).
  7. Khvostikov S. A., Bartalev S. A., Loupian E. A., Stochastic wildfire model based on Monte-Carlo method and remote sensing data integration, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 145–156 (in Russian), DOI: 10.21046/2070-7401-2016-13-5-145-156.
  8. Development and Structure of the Canadian Forest fire Behavior Prediction System, Information Report ST X 3, Forestry Canada Fire Danger Group, Ottawa: Forestry Canada Science and Sustainable Development Directorate, 1992, 66 p.
  9. Giglio L., Schroeder W., Justice C. O., The collection 6 MODIS active fire detection algorithm and fire products, Remote Sensing of Environment, 2016, Vol. 178, pp. 31–41, DOI: 10.1016/j.rse.2016.02.054.
  10. Kalnay E., Atmospheric modeling, data assimilation and predictability, Cambridge: Cambridge University Press, 2003, 369 p.
  11. Mandel J., Bennethum L. S., Beezley J. D., Coen J. L., Douglas C. C., Kim M., Vodacek A., A wildland fire model with data assimilation, Mathematics and Computers in Simulation, 2008, Vol. 79, No. 3, pp. 584–606, DOI: 10.1016/j.matcom.2008.03.015.
  12. Mandel J., Kochanski A. K., Vejmelka M., Beezley J. D., Data Assimilation of Satellite Fire Detection in Coupled Atmosphere-Fire Simulation by WRF-SFIRE, arXiv preprint, arXiv:1410.6948, 2014, 9 p., https://doi.org/10.48550/arXiv.1410.6948.
  13. Rochoux M. C., Emery C., Ricci S., Cuenot B., Trouvé A., Towards predictive data-driven simulations of wildfire spread, Part 2: Ensemble Kalman Filter for the state estimation of a front-tracking simulator of wildfire spread, Natural Hazards and Earth System Sciences Discussions, 2014, Vol. 2, No. 5, pp. 3769–3820, DOI: 10.5194/nhess-15-1721-2015.
  14. Touloumis A., Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings, Computational Statistics and Data Analysis, 2015, Vol. 83, pp. 251–261, DOI: 10.1016/j.csda.2014.10.018.
  15. Valero M. M., Rios O., Mata C., Pastor E., Planas E., An integrated approach for tactical monitoring and data-driven spread forecasting of wildfires, Fire Safety J., 2017, Vol. 91, pp. 835–844, DOI: 10.1016/j.firesaf.2017.03.085.