ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 136-146

Study of the influence of fire radiative power of forest fires on forest disturbance degree in southern regions of Central Siberia using satellite data

E.G. Shvetsov 1, 2 
1 Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russia
2 Khakassian State University, Abakan, Russia
Accepted: 23.09.2022
DOI: 10.21046/2070-7401-2022-19-5-136-146
Using MODIS data remotely sensed radiative power from forest fires was estimated and its effect on fire disturbance degree of the forest cover was analyzed. Large forest fires with the total burned area of 1500 hectares or more detected in the south of Central Siberia between 2001 and 2021 were analyzed. Using the satellite product of global forest cover change generated from Landsat data, the portion of fire pixel where forest mortality occurred was calculated. Fires in dark coniferous (Pinus sibirica, Abies sibirica) and larch-dominant (Larix sibirica) forests are characterized by higher (by about 25–30 %) values of fire radiative power compared to fires in deciduous (Betula spp., Populus tremula) forests and pine-dominant (Pinus silvestris) forests. The significant correlation (R2 = 0.46; p < 0.05) between the fire radiative power and the degree of pyrogenic disturbance of burned areas estimated using the dNBR index, was found. Significant relationship was also found between dNBR and the proportion of fire pixel, where post-fire forest mortality occurred.
Keywords: wildfires, remote sensing, MODIS, fire radiative power, vegetation indices, Siberia
Full text

References:

  1. Bartalev S. A., Stytsenko F. V., An Assessment of the Forest Stands Destruction by Fires Based on the Remote Sensing Data on a Seasonal Distribution of Burnt Areas, Lesovedenie, 2021, Vol. 2, pp. 115–122 (in Russian), DOI: 10.31857/S0024114821020029.
  2. Bartalev S. A., Egorov V. A., Krylov A. M., Stytsenko F. V., Khovratovich T. S., The evaluation of possibilities to assess forest burnt severity using multi-spectral satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 215–225 (in Russian).
  3. Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E. A., Satellite-based assessment of Russian forest fire mortality, Lesovedenie, 2015, Vol. 2, pp. 83–94 (in Russian).
  4. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S., Shabanov N., Land cover mapping over Russia using Earth observation data, Moscow: IKI RAN, 2016, 208 p. (in Russian).
  5. Buryak L. V., Sukhinin A. I., Kalenskaya O. P., Ponomarev E. I., Effects of fires in ribbon-like pine forests of southern Siberia, Contemporary Problems of Ecology, 2011, Vol. 4(3), pp. 248–253, https://doi.org/10.1134/S1995425511030039.
  6. Buryak L. V., Kukavskaya E. A., Kalenskaya O. P., Malykh O. F., Baksheeva E. O., Effects of forest fires in Southern and Central areas of the Zabaykal region, Sibirskii lesnoi zhurnal, 2016, Vol. 6, pp. 94–102 (in Russian), https://doi.org/10.15372/SJFS20160609.
  7. Russian forests and climate change. What Science Can Tell Us 11, Leskinen P., Lindner M., Verkerk P. J., Nabuurs G.-J., Van Brusselen J., Kulikova E., Hassegawa M., Lerink B. (eds), European Forest Institute, 2020, Vol. 11, 140 p., https://doi.org/10.36333/wsctu11.
  8. Loupian E. A., Lozin D. V., Balashov I. V., Bartalev S. A., Stytsenko F. V., Study of the dependence of forest fire damage degree on burning intensity based on satellite monitoring data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 217–232 (in Russian), https://doi.org/10.21046/2070-7401-2022-19-3-217-232.
  9. Ponomarev E. I., Shvetsov E. G., Kharuk V. I., Fires in the Altai-Sayan region: landscape and ecological confinement, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52(7), pp. 725–736, https://doi.org/10.1134/S0001433816070069.
  10. Ponomarev E. I., Shvetsov E. G., Usataya Yu. O., Registration of Wildfire Energy Characteristics in Siberian Forests Using Remote Sensing, Isledovanie Zemli iz kosmosa, 2017, No. 4, pp. 3–11 (in Russian), https://doi.org/10.7868/S0205961417040017.
  11. Shvetsov E. G., Ponomarev E. I., Estimating the Influence of external environmental factors on fire radiative power using satellite imagery, Contemporary Problems of Ecology, 2015, Vol. 8(3), pp. 337–343, https://doi.org/10.1134/S1995425515030142.
  12. Chu T., Guo X., Takeda K., Effects of Burn Severity and Environmental Conditions on Post-Fire Regeneration in Siberian Larch Forest, Forests, 2017, Vol. 8(76), https://doi.org/10.3390/f8030076.
  13. Delcourt C. J. F., Combee A., Izbicki B., Mack M. C., Maximov T., Petrov R., Rogers B. M., Scholten R. C., Shestakova T. A., van Wees D., Veraverbeke S., Evaluating the Differenced Normalized Burn Ratio for Assessing Fire Severity Using Sentinel-2 Imagery in Northeast Siberian Larch Forests, Remote Sensing, 2021, Vol. 13(12), Art. No. 2311, https://doi.org/10.3390/rs13122311.
  14. French N. H. F., Kasischke E. S., Halle R. J., Murphy K. A., Verbyla D. L., Hoy E. E., Allen J. L., Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results, Intern. J. Wildland Fire, 2008, Vol. 17, pp. 443–462, https://doi.org/10.1071/WF08007.
  15. Giglio L., Justice C., Boschetti L., Roy D. Collection 6 MODIS Burned Area Product User’s Guide, 2016, https://doi.org/10.5067/MODIS/MCD64A1.006.
  16. Giglio L., Schroeder W. Hall J. V., Justice C. O., MODIS Collection 6 Active Fire Product User’s Guide, 2020.
  17. Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S. V., Goetz S. J., Loveland T. R., Kommareddy A., Egorov A., Chini L., Justice C. O., Townshend J. R.G., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 2013, Vol. 342, pp. 850–853, https://doi.org/10.1126/science.1244693.
  18. Keeley J. E., Fire intensity, fire severity and burn severity: a brief review and suggested usage, Intern. J. Wildland Fire, 2009, Vol. 18, pp. 116–126, https://doi.org/10.1071/WF07049.
  19. Key C. H., Benson N. C., Landscape Assessment (LA) Sampling and Analysis Methods, USDA Forest Service General Technical Report RMRS-GTR-164-CD, 2006, 55 p.
  20. Kharuk V. I., Ponomarev E. I., Ivanova G. A., Dvinskaya M. L., Coogan S. C. P., Flannigan M. D. Wildfires in the Siberian taiga, Ambio, 2021, Vol. 50, pp. 1953–1974, https://doi.org/10.1007/s13280-020-01490-x.
  21. Krylov A., McCarty J. L., Potapov P., Loboda T., Tyukavina A., Turubanova S., Hansen M. C., Remote sensing estimates of stand-replacement fires in Russia, 2002–2011, Environmental Research Letters, 2014, Vol. 9, Art. No. 105007, https://doi.org/10.1088/1748-9326/9/10/105007.
  22. Kukavskaya E. A., Buryak L. V., Shvetsov E. G., Conard S. G., Kalenskaya O. P., The impact of increasing fire frequency on forest transformations in southern Siberia, Forest Ecology and Management, 2016, Vol. 382, pp. 225–235, https://doi.org/10.1016/j.foreco.2016.10.015.
  23. Ponomarev E. I., Zabrodin A. N., Ponomareva T. V., Classification of Fire Damage to Boreal Forests of Siberia in 2021 Based on the dNBR Index, Fire, 2022, Vol. 5(19), https://doi.org/10.3390/fire5010019.
  24. Shvetsov E. G., Kukavskaya E. A., Buryak L. V., Barrett K., Assessment of post-fire vegetation recovery in Southern Siberia using remote sensing observations, Environmental Research Letters, 2019, Vol. 14, Art. No. 055001, https://doi.org/10.1088/1748-9326/ab083d.
  25. Shvetsov E. G., Kukavskaya E. A., Shestakova T. A., Laflamme J., Rogers B. M., Increasing fire and logging disturbances in Siberian boreal forests: a case study of the Angara region, Environmental Research Letters, 2021, Vol. 16, Art. No. 115007, https://doi.org/10.1088/1748-9326/ac2e37.
  26. Vermote E. F., MOD09A1 — MODIS Surface Reflectance 8-Day L3 Global 500m SIN Grid, 2015, V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD09A1.006.
  27. Wooster M. J., Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires, Geophysical Research Letters, 2002, Vol. 29(21), Art. No. 2027, https://doi.org/10.1029/2002GL015487.
  28. Wooster M. J., Zhang Y. H., Boreal forest fires burn less intensely in Russia than in North America, Geophysical Research Letters, 2004, Vol. 31, Art. No. L20505, https://doi.org/10.1029/2004GL020805.