ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 176-189

Time series analyses of forest cover change according to elevation gradient in Gansu province of China

Y. Wang 1 , E.A. Kurbanov 1 , O.N. Vorobiev 1 
1 Volga State University of Technology, Yoshkar-Ola, Russia
Accepted: 20.10.2022
DOI: 10.21046/2070-7401-2022-19-5-176-189
This study used the time series of Landsat satellite data to define the Remote Sensing Environmental Index (RSEI) for the forests around Zhangye city in Gansu province of China from 1990 to 2021 with respect to determining forest cover changes. The elevation gradient of the estimated territory was also studied and analysed. On the basis of traditional regression method, Landsat time series were divided into three RSEI (Remote Sensing Environmental Index) curve trends: logarithmic, logistic, and exponential type, which were used to evaluate the current ecological state of the forest. Over the past 32 years, Zhangye forest area ecology has consistently improved, with 96.0 % of the forest area RSEI increasing, 1.4 % decreasing and 2.6 % remaining unchanged. The linear trend dominates the ecological changes in the forest. The RSEI findings indicate that ecology of 89.9 % of the forest areas is stable, while 10.1 % of the forest areas are unstable. There are obvious differences in RSEI trends and among diverse types of forests according to the elevation gradient. The RSEI rise area shows approximately normal distribution between 2500 and 4500 m, and the RSEI decline area forms a bimodal distribution in the two intervals of 1500–2500 and 3000–4500 m. Through the detailed differentiation of forest cover time series trends, the forest areas that need to be protected are more clearly defined.
Keywords: RSEI, time series, forest cover, monitoring, Landsat, China, trend analysis, logistic model
Full text

References:

  1. Badea O., Apostol E., Forest science innovation for sustainable forest management, improvement of human welfare, and quality of life under global environmental changes, Science of The Total Environment, 2020, Vol. 701, Art. No. 134429, 4 p., https://doi.org/10.1016/j.scitotenv.2019.134429.
  2. Chang X., Zhao W., Liu H., Wei X., Liu B., He Z., Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China, Agricultural and Forest Meteorology, 2014, Vol. 198–199, pp. 209–220, http://dx.doi.org/10.1016/j.agrformet.2014.08.015.
  3. De Jong R., Verbesselt J., Schaepman M. E., de Bruin S., Trend changes in global greening and browning: contribution of short-term trends to longer-term change, Global Change Biology, 2012, Vol. 18, No. 2, pp. 642–655, https://doi.org/10.1111/j.1365-2486.2011.02578.x.
  4. Eastman J. R., Sangermano F., Machado E. A., Rogan J., Anyamba A., Global trends in seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011, Remote Sensing, 2013, Vol. 5, No. 10, pp. 4799–4818, https://doi.org/10.3390/rs5104799.
  5. Gao G., Xin Z., Ding G., Li C., Zhang J., Linag W., An Y., He Y., Xiao M., Li W., Forest health studies based on remote sensing: a review, Acta Ecologica Sinica, 2013, Vol. 33, No. 6, pp. 1675–1689, https://doi.org/10.5846/stxb201112011838.
  6. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R., Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sensing of Environment, 2017, Vol. 202, pp. 18–27, https://doi.org/10.1016/j.rse.2017.06.031.
  7. Jamali S., Seaquist J., Eklundh L., Ardo J., Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel, Remote Sensing of Environment, 2014, Vol. 141, pp. 79–89, https://doi.org/10.1016/j.rse.2013.10.019.
  8. Jin S., Sader S., Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances, Remote Sensing of Environment, 2005, Vol. 94, No. 3, pp. 364–372, https://doi.org/10.1016/j.rse.2004.10.012.
  9. Kennedy R., Cohen W., Schroeder T., Trajectory-based change detection for automated characterization of forest disturbance dynamics, Remote Sensing of Environment, 2007, Vol. 110, No. 3, pp. 370–386, https://doi.org/10.1016/j.rse.2007.03.010.
  10. Kurbanov E., Vorobiev O., Gubayev A., Moshkina L., Leznin S., Carbon sequestration after pine afforestation on marginal lands in the Povolgie region of Russia: A case study of the potential for a Joint Implementation activity, Scandinavian J. Forest Research, 2007, Vol. 22, No. 6, pp. 488–499, https://doi.org/10.1080/02827580701803080.
  11. Kurbanov E., Vorobiev O., Sha J., Li X., Gitas I., Minakou C., Gabdelkhakov A., Martynova M., A survey on the use of GIS and remote sensing for sustainable forestry and ecology in Russia and China, Current problems in remote sensing of the Earth from space, 2020, Vol. 17, No. 5, pp. 9–20, DOI: 10.21046/2070-7401-2020-17-5-9-20.
  12. Kurbanov E., Vorobev O., Lezhnin S., Sha J., Wang J., Li X., Cole J., Dergunov D., Wang Y., Remote sensing of forest burnt area, burn severity, and post-fire recovery: a review, Remote Sensing, 2022, Vol. 14, No. 19, Art. No. 4714, https://doi.org/10.3390/rs14194714.
  13. Lai S., El-Adawy A., Sha J., Li X., Wang J., Kurbanov E., Lin Q., Towards an integrated systematic approach for ecological maintenance: case studies from China and Russia, Ecological Indicators, 2022, Vol. 140, Art. No. 108982, 19 p., https://doi.org/10.1016/j.ecolind.2022.108982.
  14. Lawrence R., Ripple W. J., Calculating change curves for multitemporal satellite imagery: Mount St. Helens 1980–1995, Remote Sensing of Environment, 1999, Vol. 67, No. 3, pp. 309–319, https://doi.org/10.1016/S0034-4257(98)00092-3.
  15. Mora F., A suite of ecological indicators for evaluating the integrity of structural eco-complexity in Mexican forests, Ecological Complexity, 2022, Vol. 50, Art. No. 101001, 19 p., https://doi.org/10.1016/j.ecocom.2022.101001.
  16. Mu H., Li X., Ma H., Du X., Huang J., Su W., Yu Z., Xu C., Liu H., Yin D., Li B., Evaluation of the policy-driven ecological network in the Three-North Shelterbelt region of China, Landscape and Urban Planning, 2022, Vol. 218, Art. No. 104305, 11 p., https://doi.org/10.1016/j.landurbplan.2021.104305.
  17. Peng H., Cheng G., Xu Z., Yin Y., Xu W., Social, economic, and ecological impacts of the “Grain for Green” project in China: A preliminary case in Zhangye, Northwest China, J. Environmental Management, 2007, Vol. 85, No. 3, pp. 774–784, https://doi.org/10.1016/j.jenvman.2006.09.015.
  18. Qiu B., Chen G., Tang Z., Lu D. Wang Z., Chen C., Assessing the Three-North Shelter Forest Program in China by a novel framework for characterizing vegetation changes, ISPRS J. Photogrammetry and Remote Sensing, 2017, Vol. 133, pp. 75–88, https://doi.org/10.1016/j.isprsjprs.2017.10.003.
  19. Riano D., Chuvieco E., Ustin S., Zomer R., Dennison P., Roberts D., Salas J., Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains, Remote Sensing of Environment, 2002, Vol. 79, No. 1, pp. 60–71, https://doi.org/10.1016/S0034-4257(01)00239-5.
  20. Tian A., Wang Y., Webb A. A., Liu Z., Ma J., Yu P., Wang X., Water yield variation with elevation, tree age and density of larch plantation in the Liupan Mountains of the Loess Plateau and its forest management implications, Science of The Total Environment, 2021, Vol. 752, Art. No. 141752, 13 p., https://doi.org/10.1016/j.scitotenv.2020.141752.
  21. Verbesselt J., Hyndman R., Newnham G., Culvenor D., Detecting trend and seasonal changes in satellite image time series, Remote Sensing of Environment, 2010, Vol. 114, No. 1, pp. 106–115, https://doi.org/10.1016/j.rse.2009.08.014.
  22. Wang C., Wang A., Guo D., Li H., Zang S., Off-peak NDVI correction to reconstruct Landsat time series for post-fire recovery in high-latitude forests, Intern. J. Applied Earth Observation and Geoinformation, 2022, Vol. 107, Art. No. 102704, 14 p., https://doi.org/10.1016/j.jag.2022.102704.
  23. Wang J., Xie Y., Wang X., Dong J., Bie Q., Detecting patterns of vegetation gradual changes (2001–2017) in Shiyang river basin, based on a novel framework, Remote Sensing, 2019, Vol. 11, No. 21, Art. No. 2475, 24 p., https://doi.org/10.3390/rs11212475.
  24. Wang Y., Forest ecological monitoring of the Shiyang river basin based on Google Earth Engine, IOP Conf. Ser.: Earth and Environment Science, 2021, Vol. 932, No. 1, Art. No. 012011, 9 p., https://doi.org/10.1088/1755-1315/932/1/012011.
  25. Wessels K. J., van den Bergh F., Scholes R. J., Limits to detectability of land degradation by trend analysis of vegetation index data, Remote Sensing of Environment, 2012, Vol. 125, pp. 10–22, https://doi.org/10.1016/j.rse.2012.06.022.
  26. Xiao Q., Huang M., Fine root distributions of shelterbelt trees and their water sources in an oasis of arid northwestern China, J. Arid Environments, 2016, Vol. 130, pp. 30–39, https://doi.org/10.1016/j.jaridenv.2016.03.004.
  27. Xiong Y., Xu W., Lu N., Huang S., Wu C., Wang L., Dai F., Kou W., Assessment of spatial-temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China, Ecological Indicators, 2021, Vol. 125, Art. No. 107518, 10 p., https://doi.org/10.1016/j.ecolind.2021.107518.
  28. Xu H., Wang M., Shi T., Guan H., Fang C., Lin Z., Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI), Ecological Indicators, 2018, Vol. 93, pp. 730–740, https://doi.org/10.1016/j.ecolind.2018.05.055.
  29. Yang Y., Monserud R. A., Huang S., An evaluation of diagnostic tests and their roles in validating forest biometric models, Canadian J. Forest Research, 2004, Vol. 34, No. 3, pp. 619–629, https://doi.org/10.1139/x03-230.
  30. Yu J., Li F., Wang Y., Lin Y., Peng Z., Cheng K., Spatiotemporal evolution of tropical forest degradation and its impact on ecological sensitivity: A case study in Jinghong, Xishuangbanna, China, Science of The Total Environment, 2020, Vol. 727, Art. No. 138678, 13 p., https://doi.org/10.1016/j.scitotenv.2020.138678.
  31. Yun Chen Y., Wang J., Kurbanov E., Thomas A., Sha J., Jiao Y., Zhou J., Ecological security assessment at different spatial scales in central Yunnan Province, China, PLoS ONE, 2022, Vol. 17, No. 6., Art. No. e0270267, 19 p., https://doi.org/10.1371/journal.pone.0270267.
  32. Zhang X., Friedl M. A., Schaaf C. B., Strahler A. H., Hodges J. C.F., Gao F., Reed B. C., Huete A., Monitoring vegetation phenology using MODIS, Remote Sensing of Environment, 2003, Vol. 84, No. 3, pp. 471–475, https://doi.org/10.1016/S0034-4257(02)00135-9.
  33. Zhang X., Liu K., Li X. Wang S., Wang J., Vulnerability assessment and its driving forces in terms of NDVI and GPP over the Loess Plateau, China, Physics and Chemistry of the Earth, 2022, Vol. 125, Art. No. 103106, 12 p., https://doi.org/10.1016/j.pce.2022.103106.
  34. Zhao J., Ma J., Zhu Y., Evaluating impacts of climate change on net ecosystem productivity (NEP) of global different forest types based on an individual tree-based model FORCCHN and remote sensing, Global and Planetary Change, 2019, Vol. 182, Art. No. 103010, 10 p., https://doi.org/10.1016/j.gloplacha.2019.103010.