ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 125-135

Pícea ábies stress levels classification by spectral features of remote sensing data

V.A. Siliuk 1 , H.S. Litvinovich 1 , I.I. Bruchkouski 1 , L.V. Katkovsky 1 , M.Yu. Belyaev 2 , E.E. Sarmin 2 
1 A.N. Sevchenko Institute of Applied Physical Problems of Belarusian State University, Minsk, Belarus
2 S.P. Korolev Rocket and Space Сorporation “Energia”, Korolev, Russia
Accepted: 19.08.2022
DOI: 10.21046/2070-7401-2022-19-5-125-135
The work is dedicated to the studies of spectral features of Pícea ábies needles and the search for attributes of stress and dryness of the needles in reflectance spectra in the visible and NIR spectral range. The results of laboratory measurements of needles reflectance spectra for different stress levels (healthy, stressed, ill) are presented, the following vegetation indices are evaluated, which determine whether the needles belong to one of the selected stress levels: TVI, SR800/500, NDVI, SR800/635, ND790/670, SR800/675, SR800/650, ND800/675, ND800/650, ND800/500, SR800/470, ND800/635, ND800/470. For these indices, the ranges of values corresponding to different stress levels of the needles are determined. The proposed method makes it possible to separate healthy needles from needles at the initial stage of stress, when they are still green, which increases the accuracy of the method compared to a visual evaluation of a tree by a forest pathologist. The results of applying the classifier, developed on the basis of the proposed method, to airborne remote sensing data of coniferous forests are presented. The uncertainty evaluated as a percentage of the total number of those spectra for which the assigned stress levels do not match when classified by the proposed method and the alternative method (without training) is 10,1 %.
Keywords: Pícea ábies, reflectance, vegetation indices, vegetation dryness, spectra, remote sensing, airborne measurements, methods of classification
Full text


  1. Bruchkousky I. I., Siliuk O. O., Litvinovich G. S., Lamaka A. A., Stanchik V. V., Guliaeva S. I., Goniophotometer for Measurements of Spectral Reflectance Coefficients and Transmission Spectra, Zhurnal prikladnoi spektroskopii, 2021, Vol. 88, No. 2, pp. 303–310 (in Russian).
  2. Stanchik V. V., Khomitsevich A. D., Photospectroradiometer for field measurements of objects reflection spectra, Prikladnye problemy optiki, informatiki, radiofiziki i fiziki kondensirovannogo sostoyaniya: materialy 4-i Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Applied Problems of Optics, Informatics, Radiophysics and Condensed Matter Physics, Proc. 4th Intern. Conf.), Minsk, 11–12 May, 2017, pp. 145–147 (in Russian).
  3. Abdullaha H., Skidmoreab A. K., Darvishzadeha R., Heurich M., Timing of red-edge and shortwave infrared reflectance critical for early stress detection induced by bark beetle (Ips typographus L.) attack, Intern. J. Applied Earth Observation and Geoinformation, 2019, Vol. 82, Art. No. 101900, DOI: 10.1016/j.jag.2019.101900.
  4. Beniušienė L., Šilinskas B., Beniušis R., Aleinikovas M., Petrauskas E., Varnagirytė-Kabašinskienė I., Scots Pine Stem Parameters in Sites with Different Stand Densities in Lithuania, Forests, 2020, Vol. 11(7), Art. No. 716, DOI: 10.3390/f11070716.
  5. Beniušienė L., Petrauskas E., Aleinikovas M., Varnagirytė-Kabašinskienė I., Beniušis R., Šilinskas B., Norway Spruce Stem Parameters in Sites with Different Stand Densities in Lithuanian Hemiboreal Forest, Forests, 2021, Vol. 12(2), Art. No. 201, DOI: 10.3390/f12020201.
  6. Boloorani A. D., Ranjbareslamloo S., Mirzaie S., Bahramic H. A., Mirzapour F., Tehrani N. A., Spectral behavior of Persian oak under compound stress of water deficit and dust storm, Intern. J. Applied Earth Observation and Geoinformation, 2020, Vol. 88, Art. No. 102082, DOI: 10.1016/j.jag.2020.102082.
  7. Chi D., Degerickx J., Yu K., Somers B., Urban Tree Health Classification Across Tree Species by Combining Airborne Laser Scanning and Imaging Spectroscopy, Remote Sensing, 2020, Vol. 12(15), Art. No. 2435, DOI: 10.3390/rs12152435.
  8. Foster A. C., Walter J. A., Shugart H. H., Sibold J., Negron J., Spectral evidence of early-stage spruce beetle infestation in Engelmann spruce, Forest Ecology and Management, 2017, Vol. 384, pp. 347–357, DOI: 10.1016/j.foreco.2016.11.004.
  9. Gamon J. A., Huemmrich K. F., Wong C. Y. S., Ensminger I., Garrity S., Hollinger D. Y., Noormets A., Peñuelas J., A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers, Proc. National Academy of Sciences, 2016, Vol. 113(46), pp. 13087–19092, DOI: 10.1073/pnas.1606162113.
  10. Guliaeva S. I., Bruchkousky I. I., Katkovsky L. V., Determining the Drying Out of Coniferous Trees Using Airborne and Satellite Data, Advances in Remote Sensing, 2021, Vol. 10, No. 2, DOI: 10.4236/ars.2021.102002.
  11. Huo L., Persson H. J., Lindberg E., Early detection of forest stress from European spruce bark beetle attack and a new vegetation index: Normalized distance red and SWIR (NDRS), Remote Sensing of Environment, 2021, Vol. 255, Art. No. 112240, DOI: 10.1016/j.rse.2020.112240.
  12. Kharuk V. I., Im S. T., Ranson K. J., Yagunov M. N., Climate-Induced Northerly Expansion of Siberian Silkmoth Range, Forests, 2017, Vol. 8, Art. No. 301, DOI: 10.3390/f8080301.
  13. Lausch A., Erasmi S., King D., Magdon P., Heurich M., Understanding forest health with remote sensing-part II — A review of approaches and data models, Remote Sensing, 2017, Vol. 9(2), Art. No. 129, DOI: 10.3390/rs9020129.
  14. Lin Q., Huang H., Wang J., Huang K., Liu Y., Detection of Pine Shoot Beetle (PSB) Stress on Pine Forests at Individual Tree Level using UAV-Based Hyperspectral Imagery and Lidar, Remote Sensing, 2019, Vol. 11(21), Art. No. 2540, DOI: 10.3390/rs11212540.
  15. Rautiainen M., Lukeš P., Homolová L., Hovi A., Pisek J., Mõttus M., Spectral Properties of Coniferous Forests: A Review of In Situ and Laboratory Measurements, Remote Sensing, 2018, Vol. 10(2), Art. No. 207, DOI: 10.3390/rs10020207.
  16. Rodman K. C., Andrus R. A., Butkiewicz C. L., Chapman T. B., Gill N. S., Harvey B. J., Kulakowski D., Tutland N. J., Veblen T. T., Hart S. J., Effects of Bark Beetle Outbreaks on Forest Landscape Pattern in the Southern Rocky Mountains, U.S.A., Remote Sensing, 2021, Vol. 13(6), Art. No. 1089, DOI: 10.3390/rs13061089.
  17. Stone C., Mohammed C., Application of remote sensing technologies for assessing planted forests damaged by insect pests and fungal pathogens: A review, Current Forestry Reports, 2017, Vol. 3, pp. 75–92, DOI: 10.1007/s40725-017-0056-1.
  18. Trumbore S., Brando P., Hartmann H., Forest health and global change, Science, 2015, Vol. 349(6250), pp. 814–818, DOI: 10.1126/science.aac6759.
  19. Varo-Martínez M. Á., Navarro-Cerrillo R. M., Stand Delineation of Pinus sylvestris L. Plantations Suffering Decline Processes Based on Biophysical Tree Crown Variables: A Necessary Tool for Adaptive Silviculture, Remote Sensing, 2021, Vol. 13(3), Art. No. 436, DOI: 10.3390/rs13030436.
  20. Wulder M. A., Dymond C. C., White J. C., Leckie D. G., Carroll A. L., Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities, Forest Ecology and Management, 2006, Vol. 221(1–3), pp. 27–41, DOI: 10.1016/j.foreco.2005.09.021.