ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 28-39

Validation of satellite algorithms for calculating the absorption coefficient of colored dissolved organic matter in the Barents Sea

A.V. Yushmanova 1, 2 , S.V. Vazyulya 1 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
Accepted: 12.10.2022
DOI: 10.21046/2070-7401-2022-19-5-28-39
This article is devoted to the analysis of the results of the work of satellite algorithms based on MODIS Aqua data used to calculate the absorption coefficient of colored dissolved organic matter (CDOM) in the Barents Sea: the regional algorithm RSA (Regional Semi-Analytical Algorithm) of the ocean optics laboratory of the Shirshov Institute of Oceanology RAS (SIO RAS), the quasi-analytical QAA (Quasi-Analytical Algorithm) and GIOP (Generalized Inherent Optical Property). These algorithms were validated according to the data of shipboard measurements performed during six expeditions of the SIO RAS in the summer season from 2016 to 2021 on cruises of the R/V Akademik Mstislav Keldysh. Comparison with field measurements performed on the ICAM (Integrated Cavity Absorption Meter) integrating sphere showed the applicability of the regional algorithm of the CDOM absorption coefficient retrieval: relative error — 31 %, root mean square error (RMSE) — 0.022 m–1. The QAA and GIOP algorithms underestimate the values of this parameter by an average of 45 and 60 %, respectively. The coefficients of backscattering by suspended particles obtained as a result of applying these algorithms are close to each other (R2 = 0.99). The total absorption coefficient obtained by GIOP is underestimated compared to direct determinations. At the same time, QAA and RSA show similar results (relative error of 25 %); however, QAA gives higher values of the particulate absorption coefficient compared to the measured ones. The station with coccolithophore bloom (5 million cells/l) was considered separately and the discussed bio-optical parameters of seawater were calculated from the data of satellite passes and a floating spectroradiometer. Calculated by GIOP and QAA, the seawater absorption and CDOM values are also lower than measured ones, and the RSA algorithm determined close values: relative errors of 12 and 8 %, respectively. Spatial distributions of the CDOM absorption coefficient according to the regional algorithm make it possible to consider the regional features of the Barents Sea; the QAA and GIOP algorithms make this process difficult.
Keywords: absorption coefficient, colored dissolved organic matter, particulate backscattering coefficient, Barents Sea, ICAM, MODIS, RSA, QAA, GIOP, reprocessing
Full text


  1. Artemiev V. A. Burenkov V. I., Vortman M. I., Grigor’ev A. V., Kopelevich O. V., Khrapko A. N., Sea-truth measurements of ocean color: a new floating spectroradiometer and its metrology, Oceanology, 2000, Vol. 40, No. 1, pp. 139–145.
  2. Burenkov V. I., Ershova S. V., Kopelevich O. V., Sheberstov S. V., Shevchenko V. P., An estimate of the distribution of suspended matter in the Barents Sea waters on the basis of the SeaWiFS satellite ocean color scanner, Okeanology, 2001, Vol. 41, No. 5, pp. 622–628.
  3. Vazyulya S. V. Kopelevich O. V., Sheberstov S. V., Artemiev V. A., Satellite estimation of the coefficients of CDOM absorption and diffuse attenuation in the White and Kara seas, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 31–41 (in Russian).
  4. Glukhovets D. I., Sheberstov S. V., Kopelevich O. V., Zaytseva A. F., Pogosyan S. I., Measurement of Sea Water Absorption Factor Using Integrating Sphere, Light and Engineering, 2018, Vol. 26, No. 5, pp. 120–126.
  5. Zatsepin A. G., Zavialov P. O., Kremenetskiy V. V., Poyarkov S. G., Soloviev D. M., The upper desalinated layer in the Kara Sea, Oceanology, 2010, Vol. 50, No. 5, pp. 657–667.
  6. Karalli P. G., Vazyulya S. V., Modification of the regional satellite algorithm for determining the concentration of chlorophyll-a in the Barents Sea, Trudy 9-i Vserossiiskoi konferentsii “Sovremennye problemy optiki estestvennykh vod” (ONW’2021) (Proc. 11thAll-Russia Conf. “Modern problems of the optics of natural waters” (ONW’2021)), Saint Petersburg, 2021, pp. 234–239 (in Russian).
  7. Kopelevich O. V., Burenkov V. I., Sheberstov S. V., Development and use of regional algorithms for calculating the biooptical characteristics of the seas of Russia according to the data of satellite color scanners, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Vol. 3, No. 2, pp. 99–105 (in Russian).
  8. Kopelevich O. V., Sahling I. V., Vazyulya S. V., Glukhovets D. I., Sheberstov S. V., Burenkov V. I., Karalli P. G., Yushmanova A. V., Bioopticheskie kharakteristiki morei, omyvayushchikh berega zapadnoi poloviny Rossii, po dannym sputnikovykh skanerov tsveta 1998–2017 gg. (Bio-optical characteristics of the seas, surrounding the western part of Russia, from data of the satellite ocean color scanners of 1998–2017), Moscow: OOO “Vash Format”, 2018, 140 p. (in Russian).
  9. Ochakovskii Yu. E., Kopelevich O. V., Voitov V. I., Svet v more (Light in the sea), Moscow: Nauka, 1970, 174 p. (in Russian).
  10. Pogosyan S. I., Durgaryan A. M., Konyukhov I. V., Chikunova O. B., Merzlyak M. N., Absorption spectroscopy of microalgae, cyanobacteria, and dissolved organic matter: Measurements in an integrating sphere cavity, Oceanology, 2009, Vol. 49, No. 6, pp. 866–871.
  11. Politova N. V., Kravchishina M. D., Novigatsky A. N., Lokhov A. S., Dispersed sedimentary matter of the Barents See, Oceanology, 2019, Vol. 59, No. 5, pp. 697–714, DOI: 10.31857/S0030-1574595777-790.
  12. Skorokhod E. Yu., Churilova T. Ya., Efimova T. V., Moiseeva N. A., Suslin V. V., Bio-optical characteristics of the Black Sea coastal waters near Sevastopol: assessment of the MODIS and VIIRS products accuracy, Morskoi gidrofizicheskii zhurnal, 2021, Vol. 37, No. 2, pp. 233–246 (in Russian), DOI: 10.22449/0233-7584-2021-2-233-246.
  13. Suetin V. S., Korolev S. N., Estimating specific features of the optical properties’ variability in the Black Sea waters using the data of satellite instruments SeaWiFS and MODIS, Morskoi gidrofizicheskii zhurnal, 2018, Vol. 34, No. 4, pp. 357–368 (in Russian), DOI: 10.22449/0233-7584-2018-4-357-368.
  14. Suetin V. S., Korolev S. N., Application of satellite data for retrieving the light absorption characteristics in the Black Sea waters, Morskoi gidrofizicheskii zhurnal, 2021, Vol. 37, No. 2, pp. 222–232 (in Russian), DOI: 10.22449/0233-7584-2021-2-222-232.
  15. Sheberstov S. V., System for batch processing of oceanographic satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 154–161 (in Russian).
  16. Bricaud A., Morel A., Babin M., Allali K., Claustre H., Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio‐optical models, J. Geophysical Research, 1998, Vol. 103, pp. 31033–31044, DOI: 10.1029/98JC02712.
  17. Demidov A. B., Kopelevich O. V., Mosharov S. A., Sheberstov S. V., Vazyulya S. V., Modelling Kara Sea phytoplankton primary production: development and skill assessment of regional algorithms, J. Sea Research, 2017, Vol. 125, pp. 1–7, DOI: 10.1016/j.seares.2017.05.004.
  18. Glukhovets D. I., Goldin Yu. A., Surface desalinated layer distribution in the Kara Sea determined by shipboard and satellite data, Oceanologia, 2020, Vol. 62, No. 3, pp. 364–373, DOI: 10.1016/j.oceano.2020.04.002.
  19. Glukhovets D. I., Kopelevich O. V., Yushmanova A. V., Vazyulya S. V., Sheberstov S. V., Karalli P. G., Sahling I. V., Evaluation of the CDOM Absorption Coefficient in the Arctic Seas Based on Sentinel-3 OLCI Data, Remote Sensing, 2020, Vol. 12, No. 19, Art. No. 3210, DOI: 10.3390/rs12193210.
  20. Hancke K., Hovland E. K., Volent Z., Pettersen R., Johnsen G., Moline M., Sakshaug E., Optical properties of CDOM across the Polar Front in the Barents Sea: Origin, distribution and significance, J. Marine Systems, 2014, Vol. 130, pp. 219–227, DOI: 10.1016/j.jmarsys.2012.06.006.
  21. Kopelevich O. V., Burenkov V. I., Ershova S. V., Sheberstov S. V., Evdoshenko M. A., Application of SeaWiFS data for studying variability of bio-optical characteristics in the Barents, Black and Caspian Seas, Deep Sea Research Part II: Topical Studies in Oceanography, 2004, Vol. 51, No. 10–11, pp. 1063–1091, DOI: 10.1016/j.dsr2.2003.10.009.
  22. Lee Z. P., Lubac B., Werdell J., Arnone R., An Update of the Quasi-Analytical Algorithm (QAA_v6), International Ocean Color Group Software Report, 2013, 9 p.
  23. Lewis K. M., Mitchell B.G, van Dijkena G. L., Arrigo K. R., Regional chlorophyll a algorithms in the Arctic Ocean and their effect on satellite-derived primary production estimates, Deep Sea Research Part II: Topical Studies in Oceanography, 2016, Vol. 130, pp. 14–27, DOI: 10.1016/j.dsr2.2016.04.020.
  24. Osadchiev A. A., Frey D. I., Shchuka S. A., Tilinina N. D., Morozov E. G., Zavialov P. O., Structure of the Freshened Surface Layer in the Kara Sea During Ice‐Free Periods, J. Geophysical Research: Oceans, 2021, Vol. 126, No. 1, p. 2020JC016486, DOI: 10.1029/2020JC016486.
  25. Pope R. M., Fry E. S., Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements, Applied Optics, 1997, Vol. 36, No. 33, pp. 8710–8723, DOI: 10.1364/AO.36.008710.
  26. Vazyulya S., Khrapko A., Kopelevich O., Burenkov V., Eremina T., Isaev A., Regional algorithms for the estimation of chlorophyll and suspended matter concentration in the Gulf of Finland from MODIS-Aqua satellite data, Oceanologia, 2014, Vol. 56, No. 4, pp. 737–756, DOI: 10.5697/oc.56-4.737.
  27. Werdell P. J., Franz B. A., Bailey S. W., Feldman G. C., Boss E., Brando V. E., Dowell M., Hirata T., Lavender S. J., Lee Z., Loisel H., Maritorena S., Mélin F., Moore T. S., Smyth T. J., Antoine D., Devred E., d’Andon O. H.F., Mangin A., Generalized Ocean color inversion model for retrieving marine inherent optical properties, Applied Optics, 2013, Vol. 52, No. 10, pp. 2019–2037, DOI: 10.1364/AO.52.002019.