ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 195-206

Investigation of ICESat-2 data capabilities for forest height estimation over Russia

S.А. Bartalev 1, 2 , M.A. Bogodukhov 1, 2 , V.O. Zharko 1, 2 , V.M. Sidorenkov 3 
1 Space Research Institute RAS, Moscow, Russia
2 Center for Forest Ecology and Productivity RAS, Moscow, Russia
3 All-Russian Research Institute for Silviculture and Mechanization of Forestry, Pushkino, Moscow Region, Russia
Accepted: 02.08.2022
DOI: 10.21046/2070-7401-2022-19-4-195-206
The paper presents an analysis of ICESat-2 data capabilities for forest height estimation and assessment of its spatial distribution over Russia. A brief overview of available current and historic lidar satellite data products is carried out. Physical basis of ATLAS instrument operation as well as an approach to form ATL08 data product with information on vertical structure of vegetation are described. An approach for automated download and preprocessing of ATL08 product is implemented, including filtering of missing/corrupted data, conversion to vector format and delineation of borders of aggregated lidar footprints for which characteristics of vegetation height distribution are provided. All available ATL08 data over Russia for the period from 14.10.2018 till 13.05.2020 was processed to form a dataset of over 125M lidar measurements of vegetation vertical structure, including over 50M measurements of forest height. This study was performed at local and national spatial levels. Local-scale accuracy assessment of the ATL08 product (at the level of forest stands) included actualization of field survey data using models of forest growth, and satellite data based estimation of mean forest height and its uncertainty considering uncertainties of input lidar measurements and forest cover heterogeneity. Results of the local-scale accuracy assessment of ATL08 data are presented, showing agreement between ground based and satellite data based measurements of mean forest height at the level of R 2 = 0,67 and RMSE = 3,79 m. National level analysis included examples of potential use of the formed dataset to study height and productivity of Russian forests. Estimates of mean forest height spatial distribution over Russia, as well as distribution of mean height for different forest types, are presented.
Keywords: remote sensing, forest height, ICESat-2, ATL08
Full text


  1. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian).
  2. Bogodukhov M. A., Bartalev S. A., Zharko V. O., Investigation of the possibility of estimating forest height dynamics on the territory of Russia based on the use of multi-time ATL08 data of the ATLAS/ICESat-2 satellite lidar, Materialy 19-i mezhdunarodnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 19th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), 15–19 Nov. 2021, Moscow: IKI RAN, 2021, p. 333 (in Russian), DOI: 10.21046/19DZZconf-2021a.
  3. Zharko V. O., Bartalev S. A., Bogodukhov M. A., Development of a height map of the forest cover of Russia based on the joint use of products for processing optical and lidar satellite remote sensing data, Materialy 19-i mezhdunarodnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 19th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), Moscow: IKI RAN, 2021, p. 347 (in Russian), DOI: 10.21046/19DZZconf-2021a.
  4. Loupian E. A., Proshin A. A., Burtsev M. A., Kashnitskii A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobets D. A., Mazurov A. A., Marchenkov V. V., Matveev A. M., Radchenko M. V., Sychugov I. G., Tolpin V. A., Uvarov I. A., Experience of development and operation of the “IKI-Monitoring” center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  5. Shvidenko A. Z., Shhepashhenko D. G., Nil’sson S., Bului Yu. I., Tablitsy i modeli khoda rosta i produktivnosti nasazhdenii osnovnykh lesoobrazuyushchikh porod Severnoi Evrazii (Tables and models of growth and productivity of forests of major forest forming species of northern Eurasia), Moscow: Federal’noe agentstvo lesnogo khozyaistva, 2008, 886 p. (in Russian).
  6. Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S., Goetz S., Loveland T., Kommareddy A., Egorov A., Chini L., Justice C. O., Townshend J., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 2013, Vol. 342, pp. 850–853, DOI: 10.1126/science.1244693.
  7. Healey S. P., Hernandez M. W., Edwards D. P., Lefsky M. A., Freeman E., Patterson P. L., Lindquist E. J., Lister A. J., CMS: GLAS LiDAR-derived Global Estimates of Forest Canopy Height, 2004–2008, Oak Ridge, Tennessee, USA: ORNL DAAC, 2015, DOI: 10.3334/ORNLDAAC/1271.
  8. Lang N., Kalischek N., Armston J., Schindler K., Dubayah R., Wegner J. D., Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles, Remote Sensing of Environment, 2022, Vol. 268, Art. No. 112760, 18 p., DOI: 10.1016/j.rse.2021.112760.
  9. Lefsky M., A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System, Geophysical Research Letters, 2010, Vol. 37. Issue 15, Art. No. L15401, 5 p., DOI: 10.1029/2010GL043622.
  10. Liu A., Cheng X., Chen Z., Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals, Remote Sensing of Environment, 2021, Vol. 264, Art. No. 112571, 10 p., DOI: 10.1016/j.rse.2021.112571.
  11. Los S. O., Rosette J. A. B., Kljun N., North P. R. J., Chasmer L., Suárez, J. C., Hopkinson C., Hill R. A., van Gorsel E., Mahoney C., Berni J. A. J., Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data, Geoscientific Model Development, 2012, Vol. 5, pp. 413–432, DOI: 10.5194/gmd-5-413-2012.
  12. Markus T., Neumann T., Martino A., Abdalati W., Brunt K., Csatho B., Farrell S., Fricker H., Gardner A., Harding D., Jasinski M., Kwok R., Magruder L., Lubin D., Luthcke S., Morison J., Nelson R., Neuenschwander A., Palm S., Zwally H., The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation, Remote Sensing of Environment, 2017, Vol. 190, pp. 260–273, DOI: 10.1016/j.rse.2016.12.029.
  13. Neuenschwander A., Magruder L., Canopy and Terrain Height Retrievals with ICESat-2: A First Look, Remote Sensing, 2019, Vol. 11(4), Art. No. 1721, 13 p., DOI: 10.3390/rs11141721.
  14. Neuenschwander A., Guenther E., White J. C., Duncanson L., Montesano P. (2020a), Validation of ICESat-2 terrain and canopy heights in boreal forests, Remote Sensing of Environment, 2020, Vol. 251, Art. No. 112110, 15 p., DOI: 10.1016/j.rse.2020.112110.
  15. Neuenschwander A. L., Pitts K. L., Jelley B. P., Robbins J., Klotz B., Popescu S. C., Nelson R. F., Harding D., Pederson D., Sheridan R. (2020b), ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 3, Boulder, Colorado, USA: NASA National Snow and Ice Data Center Distributed Active Archive Center, 2020, DOI: 10.5067/ATLAS/ATL08.003 (accessed 01.12.2020).
  16. Potapov P., Li X., Hernandez-Serna A., Tyukavina A., Hansen M., Kommareddy A., Pickens A., Turubanova A., Tang H., Silva C. E., Armston J., Dubayah R., Blair J. B., Hofton M., Mapping global forest canopy height through integration of GEDI and Landsat data, Remote Sensing of Environment, 2020, Vol. 253, Art. No. 112165, DOI: 10.1016/j.rse.2020.112165.
  17. Simard M., Pinto N., Fisher J. B., Baccini A., Mapping forest canopy height globally with spaceborne lidar, J. Geophysical Research: Biogeosciences, 2011, Vol. 116, Art. No. 4021, Issue G4, 12 p., DOI: 10.1029/2011JG001708.
  18. Zharko V., Bartalev S., Bogodukhov M., A method for the assessment of forest regrowth site index based on Earth observations and modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20359, DOI: 10.5194/egusphere-egu2020-20359.