ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 40-56

Long-term changes in remotely measured characteristics of ecosystems of the Luga River basin as a reaction to technogenic impact

A.B. Manvelova 1 , A.V. Kiselev 1 , G.M. Nerobelov 1, 2 , M.S. Sedeeva 1, 2 , V.V. Petukhov 1 , A.G. Mahura 3 , I.V. Drozdova 4 , V.I. Gornyy 1 
1 Saint Petersburg Scientific Research Center for Ecological Safety RAS, Saint Petersburg, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
3 University of Helsinki, Institute for Atmospheric and Earth System Research, Helsinki, Finland
4 Komarov Botanical Institute RAS, Saint Petersburg, Russia
Accepted: 02.08.2022
DOI: 10.21046/2070-7401-2022-19-4-40-56
A detailed analysis of long-term changes in various remotely-mapped characteristics was carried out to identify the response of ecosystems to technogenic impact, as well as the main technogenic factors affecting the health of ecosystems in the basin of the Luga River (Leningrad Region, Russia). For this, by using the materials of satellite imagery and results of mathematical modeling a set of digital maps was constructed. It was shown that the analysis of trends of remotely measured characteristics of ecosystem, mapped by average spatial resolution EOS satellites, makes it possible to identify local areas that have undergone technogenic impact with the least effort compared to the analysis of large-scale satellite data. It is noted that regional patterns of ecosystem response to technogenic impact are most clearly manifested in the underlying land surface temperature. The local areas of ecosystem response to technogenic impact are easily identified by the vegetation index and the thermodynamic index of ecosystem disturbance. An analysis of the compiled digital maps of remotely measured characteristics showed that the main factor of technogenic impact on the ecosystems in the western part of the Luga River basin is atmospheric transboundary aerotechnogenic transport of sulfur dioxide and ash from the stacks of the electric power station in the Narva city region of Estonia.
Keywords: Luga River basin, technogenic impact, satellite imagery, remotely measured characteristics of ecosystems, ecosystem response
Full text

References:

  1. Bartalev S. A., Egorov V. A., Ershov D. V., Isaev A. S., Loupian E. A., Plotnikov D. E., Uvarov I. A., Mapping of Russia’s vegetation cover using MODIS satellite spectroradiometer data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 285–302 (in Russian), available at: http://d33.infospace.ru/d33_conf/2011v8n4/285-302.pdf.
  2. Vanteeva Yu. V., Puzachenko Yu. G., Sandlerskii R. B., Assessment of thermodynamic variables of geosystems in the northeastern Baikal region based on multispectral remote information, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2017, No. 6, pp. 99–116 (in Russian), DOI: 10.7868/S0373244417060093.
  3. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Thermodynamic approach for mapping disturbance of ecosystems by remote sensing methods, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 179–194 (in Russian), available at: http://d33.infospace.ru/d33_conf/2011v8n2/179-194.pdf.
  4. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Khramtsov V. N., Verification of large scale maps of thermodynamic index ecosystem health disturbance, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 4, pp. 201–212 (in Russian), available at: http://d33.infospace.ru/d33_conf/sb2013t4/201-212.pdf.
  5. Gornyy V. I., Kiselev A., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Thermodynamic approach to satellite mapping of accumulated ecological losses of forest ecosystems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 124–136 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-124-136.
  6. Gornyy V. I., Kiselev A. V., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Satellite mapping of the thermal response of ecosystems of northern Eurasia to climate change, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 155–164 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-155-164.
  7. Eremin V. K., Popova T. A., Aerometody geologicheskikh issledovanii: monografiya (Aerometodes of geological research), Ministerstvo geologii SSSR, Lab. Aerometodov, Leningrad: Nedra, 1971, 703 p. (in Russian).
  8. Zakhozhiy I. G., Dalke I. V., Nizovtsev A. N., Golovko T. K., Bioaccumulation and physical reactions of plants on industrial pollution of the environment with mercury, Teoreticheskaya i prikladnaya ekologiya, 2011, No. 2, pp. 37–44 (in Russian), available at: http://envjournal.ru/ari/v2011/v2/11206.pdf.
  9. Kalabin G. V., Evdokimova G. A., Gornyy V. I., Estimation of dynamics of grows of derelict lands in process of deleterious effect decrease of OJSC “Severonickel copper smelter” on environment, Gornyi zhurnal, 2010, No. 2, pp. 74–77 (in Russian).
  10. Kalabin G. V., Moiseenko T. I., Gornyy V. I., Kritsuk S. G., Soromotin A. V., Satellite monitoring of natural environment at Olimpiada gold open-cut mine, Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2013, No. 1, pp. 177–184 (in Russian), available at: https://www.sibran.ru/upload/iblock/ca0/ca0e138ae5cd7b9ade8e453de194a5a7.pdf.
  11. Kalabin G. V., Gornyy V. I., Kritsuk S. G., Satellite monitoring of vegetation mantle response to the sorsk copper-molybdenum mine impact, Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2014, No. 1, pp. 153–161 (in Russian), available at: https://www.sibran.ru/upload/iblock/acd/acd142fd72791bbdba102e1ce7c52851.pdf.
  12. Kalabin G. V., Gornyy V. I., Kritsuk S. G., Environmental appraisal of the area of Kachkanar mining-and-processing plant by satellite monitoring data, Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2016, No. 2, pp. 179–187 (in Russian), available at: https://www.sibran.ru/upload/iblock/d37/d37f3ff7a749724d32511f9cded81219.pdf.
  13. Kalabin G. V., Gornyy V. I., Davidan T. A., Kritsuk S. G., Tronin A. A., Recovery of tundra ecosystem after closure of the Valkumei mine in Chukotka, Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2018, No. 2, pp. 146–153 (in Russian), DOI: 10.15372/FTPRPI20180216.
  14. Kritsuk S. G., Gornyy V. I., Kalabin G. V., Latypov I. Sh., Regularities of Vegetation Index Annual Cycles in the Region of Sorsk Mining and Metallurgical Complex, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 228–237 (in Russian), available at: http://d33.infospace.ru/d33_conf/sb2013t1/228-237.pdf.
  15. Loupian E. A., Proshin A. A., Burtsev M. A., Kashnitskii A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobet D. A., Mazurov A. A., Marchenkov V. V., Matveev A. M., Radchenko M. V., Sychugov I. G., Tolpin V. A., Uvarov I. A., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  16. Loupian E. A., Konstantinova A. M., Kashnitskii A. V., Ermakov D. M., Savorskii V. P., Panova O. Yu., Bril’ A. A., The possibilities of organizing long-term remote monitoring of large sources of anthropogenic pollution to assess their impact on the environment, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 1, pp. 193–213 (in Russian), DOI: 10.21046/2070-7401-2022-19-1-193-213.
  17. On the state of the environment in the Leningrad Region, Saint Petersburg, 2012, 320 p. (in Russian).
  18. On the environmental situation in the Leningrad Region in 2020, Saint Petersburg, 2021, 264 p. (in Russian).
  19. Review of the sanitary and forest pathology condition of the forests of the Leningrad Region for 2019 and forecast for 2020, Saint Petersburg, 2020, 227 p. (in Russian), available at: http://czlspb.ru/page/332.
  20. Puzachenko Yu. G., Sandlerskiy R. B., Krenke A. N., Puzachenko Yu. M., Multispectral remote information in forest research, Lesovedenie, 2014, No. 5, pp. 13–29 (in Russian), available at: https://www.elibrary.ru/download/elibrary_22120945_78359353.pdf.
  21. The state of the environment in the Leningrad Region, Saint Petersburg, 2019, 449 p. (in Russian).
  22. Scheme of integrated use and protection of water bodies of the Luga River basin and the rivers of the Gulf of Finland basin from the nothern border of the Luga River basin to the southern border of the Neva River basin, Book 1. General characteristics of the Luga River basin and the rivers of the Gulf of Finland basin from the northern border the Luga River basin to the southern boundary of the Neva Rver basin, 2015, 117 p. (in Russian), available at: http://www.nord-west-water.ru/upload/skiovo/luga_132/skiovo_luga_132_book_1.pdf.
  23. Titov A. F., Kaznina N. M., Talanova V. V., Tyazhelye metally i rasteniya (Heavy metals and plants), Petrozavodsk: KNC RAN, 2014, 194 p. (in Russian).
  24. Schowengerdt R. A., Remote sensing: Models and methods for image processing, 3rd ed., Amsterdam: Elsevier; Burlington: Academic Press, 2006, 560 p.
  25. Yanin E. P., Goryuchie slantsy i okruzhayushchaya sreda (ekologicheskie posledstviya dobychi, pererabotki i ispol’zovaniya) (Oil shale and the environment (environmental consequences of extraction, processing and use)), Moscow: IMGRE, 2003, 86 p. (in Russian), available at: https://www.geokniga.org/bookfiles/geokniga-goryuchie-slancy-i-okruzhayushchuyu-sreda.pdf.
  26. Baklanov A., Korsholm U. S., Nuterman R., Mahura A., Nielsen K. P., Sass B. H., Rasmussen A., Zakey A., Kaas E., Kurganskiy A., Sørensen B., González-Aparicio I., Enviro-HIRLAM online integrated meteorology-chemistry modelling system: strategy, methodology, developments and applications (v7.2), Geoscientific Model Development, 2017, Vol. 10, pp. 2971–2999, DOI: 10.5194/gmd-10-2971-2017.
  27. Jorgensen J. S., Svirezhev Yu. M., Towards a Thermodynamic Theory for Ecological Systems, Oxford: Elsevier, 2004, 366 p.
  28. Kholodova V., Volkov K., Abdeyeva A., Kuznezov V., Water status in Mesembryanthemum crystallinum under heavy metal stress, Environmental and Experimental Botany, 2011, Vol. 71, pp. 382–389.
  29. Kuhi-Thalfeldt R., Kuhi-Thalfeldt A., Valtin J., Estonian electricity production scenarios and their CO2 and SO2 emissions until 2030, WSEAS Trans. Power Systems, 2010, Issue 1, Vol. 5, pp. 11–21.
  30. Li C., Krotkov N. A., Leonard P., OMI/Aura Sulfur Dioxide (SO2) Total Column L3 1 day Best Pixel in 0.25 degree × 0.25 degree V3, Greenbelt, MD, USA: Goddard Earth Sciences Data and Information Services Center (GES DISC), 2015, DOI: 10.5067/Aura/OMI/DATA3008.
  31. Lippmaa E., Maremäe E., Uranium production from the local Dictyonema shale in North-East Estonia, Oil Shale, 2000, Vol. 17, No. 4, pp. 387–394.
  32. Puzachenko Y., Sandlersky R., Sankovski A., Methods of Evaluating Thermodynamic Properties of Landscape Cover Using Multispectral Reflected Radiation Measurements by the Landsat Satellite, Entropy, 2013, Vol. 15, Issue 9, pp. 3970–3982, DOI: 10.3390/e15093970.
  33. Puzachenko Y. G., Sandlersky R. B., Krenke A. N., Olchev A., Assessing the thermodynamic variables of landscapes in the southwest part of East European plain in Russia using the MODIS multispectral band measurements, Ecological Modelling, 2016, Vol. 319, pp. 255–274, DOI: 10.1016/j.ecolmodel.2015.06.046.
  34. Running S. W., Mu Q., Zhao M., Moreno A., User’s Guide MODIS Global Terrestrial Evapotranspiration (ET) Product (MOD16A2/A3 and Year-end Gap-filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (For Collection 6), Version 2.0, 2019, 36 p., available at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/modis/MOD16UsersGuideV2.02019.pdf.
  35. Vaasma T., Kiisk M., Meriste T., Tkaczyk A. H., The enrichment of natural radionuclides in oil shale-fired power plants in Estonia — The impact of new circulating fluidized bed technology, J. Environmental Radioactivity, 2014, Vol. 129, pp. 133–139, DOI: 10.1016/j.jenvrad.2014.01.002.
  36. Zhou Z. F., Ou J., Li S. H., Ecological Accounting: A Research Review and Conceptual Framework, J. Environmental Protection, 2016, Vol. 7, No. 5, pp. 643–655, DOI: 10.4236/jep.2016.75058.