ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 181-194

Trend analysis of MODIS time series vegetation indices to assess the impact of droughts on forest stands in the Middle Volga from 2000 to 2020

O.N. Vorobyov 1 , E.A. Kurbanov 1 , J. Sha 2 , S.A. Lezhnin 1 , J. Wang 3 , J. Cole 4 , D.M. Dergunov 1 
1 Volga State University of Technology, Yoshkar-Ola, Russia
2 College of Geography, Fujian Normal University, Fuzhou, China
3 Faculty of Geography, Yunnan Normal University, Kunming, China
4 Council for Geoscience, Pretoria, South Africa
Accepted: 28.07.2022
DOI: 10.21046/2070-7401-2022-19-4-181-194
Timely, accurate and regular monitoring of drought based on satellite data is an important part in assessing the state and productivity of forest stands. In the study we carried out a spatio-temporal analysis of drought impact on forest ecosystems of the Middle Volga region of Russia for 2000 to 2020 based on time series estimation of MODIS difference vegetation index (NDVI), vegetation condition index (VCI), standardized precipitation index (SPI) and their standardized anomalies. Raster maps of the spatial distribution trends of the studied remote sensing indices on the area of forest cover were obtained by the Kriging geostatistical interpolation. The study showed that two meteorological indicators (temperature and precipitation) obtained from satellite data are the most suitable for estimating NDVI in dry years. The possibilities of using anomalous values of the studied indices are limited due to peculiarities of the response to negative consequences of dry season impact on forest cover. When monitoring droughts on the territory of large forest areas, it is necessary to take into account local spatial and temporal trends of the studied indices, which allow assessing the situation as a whole. on the example of a particular region (the Republic of Mari El) The VCI index made it possible to conduct a more accurate assessment of the impact of drought intensity on the condition and productivity of forest stands than for the entire study region. An analysis of the linear trend of the NDVI time series over a twenty-year period demonstrates a sustainable increase in the productivity of forest stands in the Middle Volga region. The results obtained can be used for both current and predictive drought monitoring to detect the impact of climate change on the forests of the Middle Volga region and assess the probability of forest disturbances at the regional and local levels.
The reported study was funded by RFBR (Russian Foundation for Basic Research), MOST (Ministry of Science and Technology of the People’s Republic of China) and NRF (South Africa’s National Research Foundation) in the framework of research project No. 19-55-80010.
Keywords: remote monitoring, draught, climate, Middle Volga, forest ecosystems, MODIS, SPI, VCI, NDVI
Full text


  1. Vorobev O. N., Kurbanov E. A., Remote monitoring of vegetation regeneration dynamics on burnt areas of Mari Zavolzhje forests, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 124–134 (in Russian), DOI: 10.21046/2070-7401-2017-14-2-84-97.
  2. Zolotokrylin A. N., Titkova T. B., Cherenkova E. A., Vinogradova V. V., Comparative study of droughts 2010 and 2012 in the European Russia from meteorological and MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 246–253 (in Russian).
  3. Ivlieva N. G., Manukhov V. F., Khlevina S. E., Spatio-temporal analysis of climate change in the zone of deciduous forests on the right bank of the Volga, Materialy Mezhdunarodnoi konferentsii “InterKarto. InterGIS” (InterKarto InterGIS: Proc. Intern. Conf.), 2013, No. 19(1), pp. 62–68 (in Russian).
  4. Kurbanov E. A., Vorobiev O. N., Distantsionnye metody v lesnom khozyaistve (Remote sensing in forestry), Yoshkar-Ola: Volga State Univ. Technology, 2020, 266 p.
  5. Kurbanov E. A., Vorobiev O. N., Menshikov S. A., Smirnova L. N., Identification of forest stands and dominant tree species in Penza Region using Sentinel-2 imagery, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 18, No. 5, pp. 154–166 (in Russian), DOI: 10.21046/2070-7401-2018-15-5-154-166.
  6. Savin I., Bartalev S., Loupian E., Tolpin V., Medvedeva M., Plotnikov D., Satellite monitoring of vegetation affected by drought (using drought 2010 in Russia as an example), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 150–162 (in Russian).
  7. Handbook of Drought Indicators and Indices, Integrated Drought Management Programme, Integrated Drought Management Tools and Guidelines Series 2, World Meteorological Organization (WMO) and Global Water Partnership (GWP), 2016, 52 p.
  8. Cherenkova E. A., Zolotokrylin A. N., On the comparability of some quantitative indicators of drought, Fundamental’naya i prikladnaya klimatologiya, 2016, No. 2, pp. 79–94 (in Russian),
  9. Sharyi P. A., Sharaya L. S., Sidyakina L. V., The relation of forest NDVI to climate in Volga basin, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 154–163 (in Russian), DOI: 0.21046/2070-7401-2020-17-4-154-163.
  10. Allen C. D., Breshears D. D., McDowell N. G., On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphere, 2015, Vol. 6, Issue 8, pp. 1–55,
  11. Barbosa H. A., Huete A. R., Baethgen W. E., A 20-year study of NDVI variability over the Northeast Region of Brazil, J. Arid Environments, 2006, No. 67, pp. 288–307,
  12. Carlson T. N., Gillies R. R., Perry E. M., A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover, Remote Sensing Reviews, 1994, Vol. 9(1–2), pp. 161–173,
  13. Clark J. S., Iverson L., Woodall C. W., Allen C. D., Bell D. M., Bragg D. C., D’Amato A. W., Davis F. W., Hersh M. H., Ibanez I., Jackson S. T., Matthews S., Pederson N., Peters M., Schwartz M. W., Waring K. M., Zimmermann N. E., The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States, Global Change Biology, 2016, Vol. 22, No. 7, pp. 2329–2352,
  14. Cobb R. C., Ruthrof K. X., Breshears D. D., Lloret F., Aakala T., Adams H. D., Anderegg W. R. L., Ewers B. E., Galiano L., Grünzweig J. M., Ecosystem dynamics and management after forest die-off: a global synthesis with conceptual state-and-transition models, Ecosphere, 2017, Vol. 8, Issue 12, Art. No. e02034, 17 p.,
  15. Cong D., Zhao S., Chen C., Duan Z., Characterization of droughts during 2001–2014 based on remote sensing: a case study of Northeast China, Ecological Informatics, 2017, Vol. 39, pp. 56–67,
  16. Hayes M. J., Svoboda M. D., Wilhite D. A., Vanyarkho O. V., Monitoring the 1996 Drought Using the Standardized Precipitation Index, Bull. American Meteorological Society, 1999, Vol. 80, No. 3, pp. 429–438.
  17. Hou M., Venäläinenb A. K., Wang L., Pirinen P., Gao Y., Jin S., Zhu Y., Qin F., Hu Y., Spatio-temporal divergence in the responses of Finland’s boreal forests to climate variables, Intern. J. Applied Earth Observation and Geoinformation, 2020, Vol. 92, Art. No. 102186, 9 p., DOI: 10.1016/j.jag.2020.102186.
  18. IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley (eds.), WMO, UNEP, 2019, available at:
  19. Javed T., Yao N., Chen X., Suon S., Li Y., Drought evolution indicated by meteorological and remote-sensing drought indices under different land cover types in China, Environmental Science and Pollution Research, 2020, Vol. 27, pp. 4258–4274,
  20. Kogan F. N., Global drought and flood-watch from NOAA polar-orbitting satellites, Advances in Space Research, 1998, Vol. 21, No. 3, pp. 477–480,
  21. Loboda T., Krankina O., Savin I., Kurbanov E., Joanne H., Land Management and the Impact of the 2010 Extreme Drought Event on the Agricultural and Ecological Systems of European Russia, In: Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991, G. Gutman, R. Volker (eds.), Springer Intern. Publ., 2017, pp. 173–192, DOI: 10.1007/978-3-319-42638-9_8.
  22. Marumbwa F. M., An assessment of remote sensing-based drought index over different land cover types in southern Africa, Intern. J. Remote Sensing, 2020, Vol. 41, No. 19, pp. 7368–7382,
  23. McKee T. B., Doesken N. J., Kleist J., The relationship of drought frequency and duration to time scales, 8th Conf. Applied Climatology, Boston: American Meteorological Society, 1993, pp. 179–184.
  24. Santos G. M., Melendez-Pastor I., Navarro-Pedreno J., Koch M., Assessing Water Availability in Mediterranean Regions Affected by Water Conflicts through MODIS Data Time Series Analysis, Remote Sensing, 2019, Vol. 11, Issue 11, No. 1355, 20 p.,
  25. Tian F., Fensholt R., Verbesselt J., Grogan K., Horion S., Wang Y., Evaluating temporal consistency of long-term global NDVI datasets for trend analysis, Remote Sensing of Environment, 2015, Vol. 163, pp. 326–340,
  26. Qian X., Liang L., Shen Q., Sun Q., Zhang L., Liu Z., Zhao S., Qin Z., Drought trends based on the VCI and its correlation with cli-mate factors in the agricultural areas of China from 1982 to 2010, Environmental Monitoring and Assessment, 2016, Vol. 188, Issue 11, Art. No. 639, pp. 1–13, DOI: 10.1007/s10661-016-5657-9.
  27. Zargar A., Sadiq R., Naser B., Khan F. I., A review of drought indices, Environmental Reviews, 2011, Vol. 19, No. NA, pp. 333–349,