ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 293-305

Using Arktika-M No. 1 satellite MSU-GS data for monitoring and analyzing mesoscale cyclones in the Arctic region

E.A. Frolova 1 , E.S. Nesterov 2 , A.A. Salagina 1 
1 State Research Center for Space Hydrometeorology “Planeta”, Moscow, Russia
2 Hydrometeorological Research Center of the Russian Federation, Moscow, Russia
Accepted: 29.06.2022
DOI: 10.21046/2070-7401-2022-19-4-293-305
Despite long-term studies of mesoscale cyclones in the Arctic region, which started in 1960, this atmospheric phenomenon has not been fully understood yet and is extremely difficult to predict. This is mainly due to the lack of satellite monitoring of the atmosphere in the northern polar latitudes with a high temporal resolution and an extremely sparse network of ground-based observations in the Arctic. On February 28, 2021, the Russian Arktika-M No. 1 satellite was launched, which is the world’s first hydrometeorological satellite operating in a highly elliptical Molniya-type orbit. The launch of the unique satellite with the multi-channel scanning unit (MSU-GS) as the main onboard mission equipment opened a possibility of obtaining data on the state of the atmosphere over the entire Arctic region with a frequency of 15/30 minutes during the working section of the satellite orbit. In particular, obtaining these data makes an invaluable contribution to solving the problems of monitoring and studying mesoscale cyclones in the northern polar latitudes, which is clearly shown in the present paper. The first summary results of monitoring mesoscale cyclones are presented as a map of their occurrence frequency. The potential of using the Arktika-M No. 1 MSU-GS data coupled with data of the regional hydrodynamic forecast model to perform synoptic analysis by the example of the manifestation of mesoscale cyclogenesis in the Barents Sea on May 31, 2021 is demonstrated.
Keywords: mesoscale cyclogenesis, mesoscale cyclone, polar low, Arctic, Arctic region, satellite monitoring, Arktika-M No. 1 satellite, MSU-GS, synoptic analysis
Full text


  1. Asmus V. V., Volgutov R. V., Deryugina V. V., Krovotyntsev V. A., Maksimov A. A., Milekhin O. E., Trenina I. S., Satellite technologies applied to hydrometeorological problems in the Arctic region, Russian Meteorology and Hydrology, 2019, Vol. 44, No. 4, pp. 250–261.
  2. Asmus V. V., Milekhin O. E., Kramareva L. S., Khailov M. N., Shirshakov A. E., Shumakov I. A., Arktika-M: the world’s first highly elliptical hydrometeorological space system, Meteorologiya i gidrologiya, 2021, No. 12, pp. 11–26 (in Russian), DOI: 10.52002/0130-2906-2021-12-11-26.
  3. Vysokoellipticheskaya gidrometeorologicheskaya kosmicheskaya sistema “Arktika-M” (Arktika-M High-Elliptical Hydrometeorological Space System), Lavochkin Association, 2021, 8 p. (in Russian), available at:
  4. Glazunov V. G., Meteorological examination of the Mi-8MT disaster in Svalbard in 2008, Aviation Explorer, 2012 (in Russian), available at:
  5. Gurvich I. A., Mitnik L. M., Mitnik M. L., Mesoscale Cyclogenesis over the Japan Sea on 7–13 January 2009 from Satellite Multisensor Data, Issledovanie Zemli iz kosmosa, 2010, No. 4, pp. 11–22 (in Russian).
  6. Zabolotskikh E. V., Mitnik L. M., Bobylev L. P., Comparative evaluation of existing and prospective research methods in the field of monitoring and forecasting mesoscale cyclonic eddies, including polar cyclones, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 23–29 (in Russian).
  7. Lutsenko E. I., Lagun V. E., Polyarnye mezomasshtabnye tsiklonicheskie vikhri v atmosfere Arktiki (Polar mesoscale cyclonic vortices in the Arctic atmosphere), Saint Petersburg: AARI, 2010, 98 p. (in Russian).
  8. Mitnik L. M., Mitnik M. L., Gurvich I. A., Vykochko A. V., Kuzlyakina Yu. A., Chornyy I. V., Multisensor satellite sounding of winter cyclones with storm and hurricane winds in the North Pacific Ocean, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 4, pp. 161–174 (in Russian).
  9. Mitnik L. M., Trusenkova O. O., Lobanov V. B., Microwave remote sensing of ocean and atmosphere from space: achievements and prospects (review), Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk, 2015, No. 6(184), pp. 5–20 (in Russian).
  10. Nesterov E. S., Polar cyclones: observations, reanalysis, modeling, Gidrometeorologicheskie issledovaniya i prognozy, 2020, No. 1(375), pp. 65–82 (in Russian), DOI: 10.37162/2618-9631-2020-1-65-82.
  11. Nesterov E. S., Zhupanov V. D., Fedorenko A. V., Features of the formation and evolution of the polar cyclone in the Barents and Kara Seas in December 2020, Gidrometeorologicheskie issledovaniya i prognozy, 2021, No. 3(381), pp. 44–52 (in Russian), DOI: 10.37162/2618-9631-2020-1-65-82.
  12. Nikitin M. A., Rivin G. S., Rozinkina I. A., Chumakov M. M., Using the COSMO-Ru forecasting system to study the properties of polar cyclones: March 25–27, 2014 episode, Trudy Gidromettsentra Rossii, 2016, No. 361, pp. 128–145 (in Russian).
  13. Decision of the Central Methodological Commission for Hydrometeorological and Heliogeophysical Forecasts of 16 December 2020, Moscow: Roshydromet, 2020, 11 p. (in Russian), available at:
  14. Smirnova Yu. E., Zabolotskikh E. V., Bobylev L. P., Shapron B., Statistical Characteristics of Polar Lows in the Nordic Seas Using Satellite Passive Microwave Data, Issledovanie Zemli iz kosmosa, 2016, No. 3, pp. 27–36 (in Russian), DOI: 10.7868/S0205961415040119.
  15. Frolova E. A., Sadovnikova E. V., Salagina A. A., Nesterov E. S., Monitoring of mesoscale cyclones in the Arctic region according to the data of the Arktika-M No. 1 satellite, Materialy 19-i Mezhdunarodnoi konferentsiiSovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 19th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), 15–19 Nov. 2021, Moscow: IKI RAN, 2021, p. 209 (in Russian), available at:
  16. Adakudlu M., Barstad I., Impacts of the ice-cover and sea-surface temperature on a polar low over the Nordic seas: a numerical case-study, Quarterly J. Royal Meteorological Society, 2011, Vol. 137, pp. 1716–1730, DOI: 10.1002/qj.856.
  17. Føre I., Kristjansson J. E., Kolstad E. W., Bracegirdle T. J., Saetra Ø., Røsting B., A “hurricane-like” polar low fuelled by sensible heat flux: high-resolution numerical simulations, Quarterly J. Royal Meteorological Society, 2012, Vol. 138, pp. 1308–1324, DOI: 10.1002/qj.1876.
  18. Günther H., Øyvind S., Workshop on polar lows, Bull. American Meteorological Society, 2013, Vol. 94, No. 9, pp. ES123–ES126, DOI: 10.1175/BAMS-D-12-00190.1.
  19. Kolstad E. W., Higher ocean wind speeds during marine cold air outbreaks, Quarterly J. Royal Meteorological Society, 2017, Vol. 143, No. 706, pp. 2084–2092.
  20. Mallet P.-T., Claud C., Cassou C., Noer G., Kodera K., Polar lows over the Nordic and Labrador seas: synoptic circulation patterns and associations with North Atlantic-Europe wintertime weather regimes, J. Geophysical Research: Atmospheres, 2013, Vol. 118, pp. 2455–2472.
  21. Noer G., Saetra O., Lien T., Gusdal Y., A climatological study of polar lows in the Nordic Seas, Quarterly J. Royal Meteorological Society, 2011, Vol. 137, pp. 1762–1772, DOI: 10.1002/qj.846.
  22. Report concerning aviation accident on the Cape Heer Heliport, Svalbard, Norway, 30 March 2008 with Mil Mi-8MT, RA-06152, operated by Spark+ Airline Ltd., Accident Investigation Board Norway, 2013, 37 p., available at:
  23. Rojo M., Claud C., Mallet P.-E., Noer G., Carleton A. M., Vicomte M., Polar low tracks over the Nordic Seas: A 14-winter climatic analysis, Tellus, 2015, Vol. 67A, pp. 1–20,