ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 113-127

Prospects for revealing identification indicators of crop canopy based on aerospace imagery and field precision experimentation

V.P. Yakushev 1 , V.V. Yakushev 1 , S.Yu. Blokhina 1 , Yu.I. Blokhin 1 , D.A. Matveenko 1 
1 Agrophysical Research Institute, Saint Petersburg, Russia
Accepted: 25.07.2022
DOI: 10.21046/2070-7401-2022-19-4-113-127
This paper lays out a conceptual framework for the methodological and technological infrastructure for conducting experimental studies based on remote sensing data in the crop production management. The effectiveness of the development of methods for remote diagnostics of crops depends on revealing the identifying optical indicators characterizing the physiological state of crops. A research methodology has been developed to conduct specialized field experiments with test plots where various conditions for growing crops are physically created, along with conjugated remote monitoring using multispectral and hyperspectral instruments installed on unmanned aerial vehicles. To systematize, store and provide access to heterogeneous information, the instrumental interface for the implementation of a geospatial database was developed. The results of revealing correlations between optical indices and the rate of applied nitrogen fertilizer and seeding rates are presented. The paper provides a rationale for placing wireless sensor networks on test plots for measuring soil hydrothermal characteristics and ambient environment parameters for the validation of mathematical models in the tasks of operational control and forecasting of crop growth and development.
Keywords: remote sensing, field precision experimentation, test plots, identifying optical indicators of crops, infrastructure of experimental studies
Full text


  1. Blokhin Yu. I., Belov A. V., Blokhina S. Yu., Integrated system for control of soil moisture and local weather conditions for remote sensing data interpretation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 87–95 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-87-95.
  2. Blokhin Yu. I., Yakushev V. V., Blokhina S. Yu., Petrushin A. F., Mitrofanova O. A., Mitrofanov E. P., Dvirnik A. V., New solutions for the reference data formation to improve the accuracy of the agrophysical soil properties determination from satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 164–178 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-164-178.
  3. Blokhina S. Yu., Blokhin Yu. I., A smart farming concept based on the internet of things, Zemledelie, 2020, No. 7, pp. 7–15 (in Russian), DOI: 10.24411/0044-3913-2020-10702.
  4. Danilov R. Yu., Kremneva O. Yu., Ismailov V. Ya., Tretyakov V. A., Rizvanov A. A., Krivoshein V. V., Pachkin A. A., General methods and results of ground hyperspectral studies of seasonal changes in the reflective properties of crops and certain types of weeds, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 113–127 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-113-127.
  5. Denisov P. V., Sereda I. I., Troshko K. A., Loupian E. A., Plotnikov D. E., Tolpin V. A., Opportunities and experience of operational remote monitoring of winter crops condition in Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 171–185 (in Russian), DOI: 10.21046/2070-7401-2021-18-2-171-185.
  6. Zakharyan Yu. G., Otsenka effektivnosti adaptatsii agrotekhnologicheskikh reshenii k prostranstvenno-vremennoi neodnorodnosti sel’skokhozyaistvennykh zemel’: Avtoref. diss. dokt. s.-kh. nauk (Evaluation of the effectiveness of adaptation of agrotechnological solutions to the spatial and temporal heterogeneity of agricultural lands, Ext. abstract Doct. agricult. sci. thesis), Saint Petersburg: AFI, 2018, 50 p. (in Russian).
  7. Konashenkov A. A., Nauchnoe obosnovanie sistem udobreniya dlya pretsizionnogo primeneniya v usloviyakh Severo-Zapada Rossii: Avtoref. diss. dokt. s.-kh. nauk (Scientific substantiation of fertilizer systems for precision application in the conditions of the North-West of Russia, Ext. abstract Doct. agricult. sci. thesis), Saint Petersburg: AFI, 2014, 41 p. (in Russian).
  8. Konev A. V., Avtomatizatsiya primeneniya i metodika sovershenstvovaniya sposobov opredeleniya doz udobrenii v sisteme tochnogo zemledeliya: Avtoref. diss. kand. s.-kh. nauk (Automation of application and methods for improving methods for determining fertilizer doses in the precision farming system, Ext. abstract Cand. agricult. sci. thesis), Saint Petersburg: AFI, 2014, 23 p. (in Russian).
  9. Lekomtsev P. V., Nauchno-metodicheskoe obespechenie upravleniya produktsionnym protsessom yarovoi pshenitsy v sisteme tochnogo zemledeliya: Avtoref. diss. dokt. biol. nauk (Scientific and methodological support for the control of the production process of spring wheat in the system of precision farming, Ext. abstract Doct. biol. sci. thesis), Saint Petersburg: AFI, 2015, 48 p. (in Russian).
  10. Loupian E. A., Bourtsev M. A., Proshin A. A., Kobets D. A., Evolution of remote monitoring information systems development concepts, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 53–66 (in Russian), DOI: 10.21046/2070-7401-2018-15-3-53-66.
  11. Matveenko D. A., Differentsirovannoe vnesenie azotnykh udobrenii na osnove otsenki opticheskikh kharakteristik posevov yarovoi pshenitsy: Avtoref. diss. kand. s.-kh. nauk (Differentiated application of nitrogen fertilizers based on the assessment of the optical characteristics of spring wheat crops, Ext. abstract Cand. agricult. sci. thesis), Saint Petersburg: AFI, 2012, 21 p. (in Russian).
  12. Matveenko D. A., Yakushev V. V., Yakushev V. P., Precision management of the nitrogen status of spring wheat crops based on remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 79–86 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-79-86.
  13. Medvedev S. A., Cheryaev A. S., Prospects for creating universal service for remote ensemble calculations of dynamic models of cultivated plant production process, Agrofizika, 2020, No. 3, pp. 45–52 (in Russian), DOI: 10.25695/AGRPH.2020.03.07.
  14. Mitrofanov E. P., Mitrofanova O. A., Petrushin A. F., Eksperimental’nye dannye dlya resheniya zadach tochnogo zemledeliya (Experimental data for solving problems of precision farming), Certificate of state registration of database No. 2021620305 (RU), Reg. 19.02.2021 (in Russian).
  15. Mitrofanova O. A., Bure V. M., Kanash E. V., Math module to automate the colorimetric method for estimating nitrogen status of plants, Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2016, No. 1, pp. 85–91 (in Russian).
  16. Poluektov R. A., Smolyar E. I., Yakushev V. P., The concept of experimental work and the development of modern research methods in agronomy and agrophysics, Vestnik Rossiiskoi akademii sel’skokhozyaistvennykh nauk, 1999, No. 2, pp. 15–17 (in Russian).
  17. Poluektov R. A., Topazh A. G., Terleev V. V., Bakalenko B. I., Poluektov M. A., Kobylyanskii S. G., AGROTOOL, V.4 — programma dlya polivariantnogo rascheta dinamiki produktsionnogo protsessa sel’skokhozyaistvennykh rastenii (AGROTOOL, V.4 — program for polyvariant calculation of the dynamics of the production process of agricultural plants), Certificate of state registration of software No. 2011611819 (RU), Reg. 13.01.2011 (in Russian).
  18. Romanov A. A., Romanov A. A., System analysis of approaches to creating business services based on space information, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 9–24 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-9-24.
  19. Savin I. Yu., Blokhin Yu. I., On optimizing the deployment of an internet of things sensor network for soil and crop monitoring on arable plots, Dokuchaev Soil Bulletin, 2022, V. 110, pp. 22–50 (in Russian), DOI: 10.19047/0136-1694-2022-110- 22-50.
  20. Shpanev A. M., Experimental basis for remote sensing of phytosanitary condition of agroecosystems in the North-West of the Russian Federation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 61–68 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-61-68.
  21. Yakushev V. V., Informatsionno-tekhnologicheskie osnovy pretsizionnogo proizvodstva rastenievodcheskoi produktsii: Avtoref. diss. dokt. s.-kh. nauk (Information and technological foundations of precision production of crop products, Ext. abstract Cand. agricult. sci. thesis), Saint Petersburg: AFI, 2013, 367 p. (in Russian).
  22. Yakushev V. V., Tochnoe zemledelie: teoriya i praktika (Precision farming: theory and practice), Saint Petersburg: FGBNU AFI, 2016, 364 p. (in Russian).
  23. Yakushev V. V., Konev A. B., Matveenko D. A., Yakusheva O. I., Precision experiments in information support of farming systems, Vestnik rossiiskoi sel’skokhozyaistvennoi nauki, 2011, No. 3, pp. 11–13 (in Russian).
  24. Yakushev V. P., Yakushev V. V., Prospects for “smart agriculture” in Russia, Herald of the Russian Academy of Sciences, 2018, Vol. 88, No. 5, pp. 330–340, DOI: 10.1134/S1019331618040135.
  25. Yakushev V. P., Kanash E. V., Bure V. M. (2010a), Teoreticheskie i metodicheskie osnovy vydeleniya odnorodnykh tekhnologicheskikh zon dlya differentsirovannogo primeneniya sredstv khimizatsii po opticheskim kharakteristikam poseva (Theoretical and methodological foundations for the allocation of homogeneous technological zones for the differentiated use of chemicals according to the optical characteristics of sowing), Saint Petersburg: AFI, 2010, 60 p. (in Russian).
  26. Yakushev V. P., Kanash E. V., Osipov Yu. A., Yakushev V. V., Lekomtsev P. V., Voropaev V. V. (2010b), Optical criteria during contact and distant measurements sowing state of wheat and photosynthesis effectiveness on the background of deficit of mineral nutrition, Sel’skokhozyaistvennaya biologiya, 2010, No. 3, pp. 94–101(in Russian).
  27. Yakushev V. P., Lekomtsev P. V., Voropaev V. V., Konev A. V., Pervak T. S., Discriminatory application of the chemicals under the spring wheat cultivation, Vestnik rossiiskoi sel’skokhozyaistvennoi nauki, 2017, No. 4, pp. 13–17 (in Russian).
  28. Yakushev V. P., Dubenok N. N., Loupian E. A., Earth remote sensing technologies for agriculture: application experience and development prospects, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 11–23 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-11-23.
  29. Yakushev V. P., Yakushev V. V., Matveenko D. A. (2020a), Intelligent systems for technology decision support in precision agriculture, Zemledelie, 2020, No. 1, pp. 33–37 (in Russian), DOI: 10.24411/0044-3913-2020-10109.
  30. Yakushev V. P., Petrushin A. F., Matveenko D. A., Blokhina S. Yu., Kanash E. V., Yakushev V. V. (2020b), New method of quantity estimation of intra field variability by optical characteristics of sowings for precision farming, Vestnik rossiiskoi sel’skokhozyaistvennoi nauki, 2020, No. 2, pp. 4–10 (in Russian), DOI: 10.30850/vrsn/2020/2/4-10.
  31. Yakushev V. P., Yakushev V. V., Badenko V. L., Matveenko D. A., Chesnokov Yu. V. (2020c), Operative and long-term forecasting of crop productivity based on mass calculations of the agroecosystem simulation model in geoinformation environment, Sel’skokhozyaistvennaya biologiya, 2020, Vol. 55, No. 3, pp. 451–467 (in Russian), DOI: 10.15389/agrobiology.2020.3.451rus.
  32. Yakushev V. P., Yakushev V. V., Blokhina S. Yu., Blokhin Yu. I., Matveenko D. A. (2021a), Information support for modern agricultural systems in Russia, Vestnik Rossiiskoi akademii nauk, 2021, Vol. 91, No. 8, pp. 755–768 (in Russian), DOI: 10.31857/S0869587321080090.
  33. Yakushev V. P., Yakushev V. V., Blokhina S. Yu., Blokhin Yu. I., Matveenko D. A. (2021b), Prospects for the operational spatial assessment of the water availability of agricultural areas based on integrated application of mathematical models, remote and ground measurements, Plodorodie, 2021, No. 3, pp. 108–116 (in Russian), DOI: 10.25680/S19948603.2021.120.21.
  34. Yakushev V. P., Kanash E. V., Rusakov D. V., Yakushev V. V., Blokhina S. Yu., Petrushin A. F., Blokhin Yu. I., Mitrofanova O. A., Mitrofanov E. P., Correlation dependences between crop reflection indices, grain yield and optical characteristics of wheat leaves at different nitrogen level and seeding density, Sel’skokhozyaistvennaya biologiya, 2022, Vol. 57, No. 1, pp. 98–112 (in Russian), DOI: 10.15389/agrobiology.2022.1.98rus.
  35. Yakusheva O. I., Vliyanie vnutripol’noi pochvennoi neodnorodnosti i urovnya intensifikatsii agrotekhnologii na urozhainost’ yarovoi pshenitsy: Avtoref. diss. kand. s.-kh. nauk (Influence of intra-field soil heterogeneity and the level of intensification of agricultural technologies on the yield of spring wheat, Ext. abstract Cand. agricult. sci. thesis), Saint Petersburg: AFI, 2013. 24 p. (in Russian).
  36. Bachmaier M., Gandorfer M., A conceptual framework for judging the precision agriculture hypothesis with regard to site-specific nitrogen application, Precision Agriculture, 2009, Vol. 10, No. 2, pp. 95–110, DOI: 10.1007/s11119-008-9069-x.
  37. Bannari A., Khurshid S. K., Staenz K., Schwatz J., Potentional of Hyperion EO-1 hyperspectral data for wheat crop chlorophyll content extraction in precision agriculture, Canadian J. Remote Sensing, Special Issue on Hyperspectral Remote Sensing, 2008, Vol. 34, No. 1, pp. 139–157, DOI: 10.5589/m08-001.
  38. Borrero J. D., Zabalo A., An autonomous wireless device for real-time monitoring of water needs, Sensors, 2020, Vol. 20, Art. No. 2078, 16 p., DOI: 10.3390/s20072078.
  39. Bullock D. S., Bullock D. G., From agronomic research to farm management guidelines: a primer on the economics of information and precision technology, Precision Agriculture, 2000, Vol. 2, No. 1, pp. 71–101, DOI: 10.1023/A:1009988617622.
  40. Finger R., Swinton S., El Bennid N., Walter A., Precision farming at the nexus of agricultural production and the environment, Annual Review of Resource Economics, 2019, Vol. 11, pp. 313–335, DOI: 10.1146/annurev-resource-100518-093929.
  41. Fu P., Meacham-Hensold K., Guan K., Wu J., Bernacchi C., Estimating photosynthetic traits from reflectance spectra: a synthesis of spectral indices, numerical inversion, and partial least square regression, Plant, Cell and Environment, 2020, Vol. 43, No. 5, pp. 1241–1258, DOI: 10.1111/pce.13718.
  42. Gaso D. V., Berger A. G., Ciganda V. S., Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images, Computers and Electronics in Agriculture, 2019, Vol. 159, pp. 75–83, DOI: 10.1016/j.compag.2019.02.026.
  43. Gitelson A., Solovchenko A., Viña A., Foliar absorption coefficient derived from reflectance spectra: A gauge of the efficiency of in situ light-capture by different pigment groups, J. Plant Physiology, 2020, Vol. 254, p. 153277, DOI: 10.1016/j.jplph.2020.153277.
  44. Heady E. O., Pesek J., A fertilizer production surface with specification of economic optima for corn grown on calcareous Ida silt loam, American J. Agricultural Economics, 1954, Vol. 36, No. 3, pp. 466–482, DOI: 10.2307/1233014.
  45. Ji Z., Pan Y., Zhu X., Wang J., Li Q., Prediction of crop yield using phenological information extracted from remote sensing vegetation index, Sensors, 2021, Vol. 21, No. 4, Art. No. 1406, 16 p., DOI: 10.3390/s21041406.
  46. Kanash E. V., Osipov J. A., Optical signals of oxidative stress in crops physiological state diagnostics, Proc. 7 th European Conf. Precision Agriculture (ECPA 2009), E. J. van Henten, D. Goense, C. Lokhorst (eds.), Wageningen, 2009, pp. 81–88.
  47. Lu B., Dao P. D., Liu J., He Y., Shang J., Recent advances of hyperspectral imaging technology and applications in agriculture, Remote Sensing, 2020, Vol. 12, No. 16, Art. No. 2659, 44 p., DOI: 10.3390/rs12162659.
  48. Lu R., Van Beers R., Saeys W., Li C., Cen H., Measurement of optical properties of fruits and vegetables: a review, Postharvest Biology and Technology, 2020, Vol. 159, p. 111003, DOI: 10.1016/j.postharvbio.2019.111003.
  49. Maestrini B., Basso B., Drivers of within-field spatial and temporal variability of crop yield across the US Midwest, Scientific Reports, 2018, Vol. 8, No. 1, pp. 1–9, DOI: 10.1038/s41598-018-32779-3.
  50. Mittermayer M., Gilg A., Maidl F. X., Nätscher L., Hülsbergen K. J., Site‐specific nitrogen balances based on spatially variable soil and plant properties, Precision Agriculture, 2021, Vol. 22, No. 5, pp. 1416–1436, DOI: 10.1007/s11119-021-09789-9.
  51. Morais R., Mendes J., Silva R., Silva N., Sousa J., Peres E., A versatile, low-power and low-cost IoT device for field data gathering in precision agriculture practices, Agriculture, 2021, Vol. 11, Art. No. 619, 16 p., DOI: 10.3390//agriculture11070619.
  52. Oppelt N., Mauser W., Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data, Intern. J. Remote Sensing, 2004, Vol. 25, No. 1, pp. 145–159, DOI: 10.1080/0143116031000115300.
  53. Pinter P. J. Jr., Hatfield J. L., Schepers J. S., Barnes E. M., Moran M. S., Daughtry C. S. T., Upchurch Dan R., Remote sensing for crop management, Photogrammetric Engineering and Remote Sensing, 2003, Vol. 69, No. 6, pp. 647–664, DOI: 0099-1112/03/6906–647$3.00/0.
  54. Placidi P., Morbidelli R., Fortunati D., Papini N., Gobbi F., Scorzoni A., Monitoring soil and ambient parameters in the IoT precision agriculture scenario: an original modeling approach dedicated to low-cost soil water content sensors, Sensors, 2021, Vol. 21, No. 15, Art. No. 5110, DOI: 10.3390/s21155110.
  55. Rodriguez D. G. P., Bullock D. S., Boerngen M. A., The origins, implications, and consequences of yield-based nitrogen fertilizer management, Agronomy J., 2019, Vol. 111, No. 2, pp. 725–735, DOI: 10.2134/agronj2018.07.0479.
  56. Rodríguez-Robles J., Martin A., Martin S., Ruipérez-Valiente J. A., Castro M., Autonomous sensor network for rural agriculture environments, low cost, and energy self-charge, Sustainability, 2020, Vol. 12, Art. No. 5913, 17 p., DOI:10.3390/su12155913.
  57. Rouse J. W., Haas R. H., Schell J. A., Deering D. W., Monitoring vegetation systems in the great plains with ERTS, In: 3 rd Earth Resources Technology Satellite-1 Symp., Vol. 1, Washington, DC: NASA, 1973, pp. 309–317.
  58. Scharf P. C., Kitchen N. R., Sudduth K. A., Davis J. G., Spatially variable corn yield is a weak predictor of optimal nitrogen rate, Soil Science Society of America J., 2006, Vol. 70, No. 6, pp. 2154–2160, DOI: 10.2136/sssaj2005.0244.
  59. Spillman W. J., Application of the law of diminishing returns to some fertilizer and feed data, American J. Agricultural Economics, 1923, Vol. 5, No. 1, pp. 36–52, DOI: 10.2307/1230266.
  60. Stauber M. S., Burt O. R., Linse F., An economic evaluation of nitrogen fertilization of grasses when carry-over is significant, American J. Agricultural Economics, 1975, Vol. 57, No. 3, pp. 463–471, DOI: 10.2307/1238409.
  61. Trevisan R. G., Bullock D. S., Martin N. F., Spatial variability of crop responses to agronomic inputs in on farm precision experimentation, Precision Agriculture, 2021, Vol. 22, No. 2, pp. 342–363, DOI:10.1007/s11119-020-09720-8.
  62. Tumusiime E., Brorsen B. W., Mosali J., Johnson J., Locke J., Biermacher J., Determining optimal levels of nitrogen fertilizer using random parameter models, J. Agricultural and Applied Economics, 2011, Vol. 43, No. 4, pp. 541–552, DOI: 10.1017/S1074070800000067.
  63. Yakushev V. P., Kanash E. V., Evaluation of plants nitrogen status by colorimetric characteristics of crop canopy presented in digital images, Proc. 8 th European Conf. Precision Agriculture, J. V. Stafford (ed.), Prague, 2011, pp. 341–345.