ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 249-264

Satellite monitoring of ecological condition of specially protected Northern Caspian areas on the example of UNESCO Kizlyar Bay Biosphere Reserve

I.E. Kurbatova 1 , T.V. Vereshchaka 2 , A.A. Ivanova 2 
1 Water Problems Institute RAS, Moscow, Russia
2 Moscow State University of Geodesy and Cartography, Moscow, Russia
Accepted: 19.07.2022
DOI: 10.21046/2070-7401-2022-19-4-249-264
The possibilities are considered to use satellite information from Landsat-2, -5, -8, and Sentinel-2 for monitoring hard-to-reach specially protected wetlands of the Northern Caspian Sea shelf zone. The main environmental problems of these lands are described also using the above satellite data on the example of Kizlyar Bay reserve. Information on the specific features of shelf ecosystems is given. It is shown that the safety and stability of the state of these territories depends on various factors, both natural climatic (long-term, seasonal and episodic surge fluctuations of the Caspian Sea level) and anthropogenic (constantly increasing background pollution of sea water due to the runoff of the Volga and Ural rivers, intense movement of tankers and small-sized water transport, development of oil and gas fields). The materials and research methods are characterized. Changes in water surface areas within the boundaries of the reserve are estimated for the minimum low (1977), high (1995) and low modern (2021) sea levels using water indices. A sharp increase in the content of chlorophyll-a in the water area over the past 6 years was shown by analyzing space information at different times in the red and red edge zones of the spectrum, which indicates the intensity of water bloom in shallow waters and the deterioration of its quality in the Kizlyar Bay. The proximity of oil platforms to the shelf zone of the Northern Caspian Sea, which poses a threat to endemic and valuable species of aquatic and avifauna, has been noted. The distance and time of movement of oil pollution at various easterly storm wind speeds in case of accidents at offshore production wells or tankers are calculated. According to the images from the Landsat-8 satellite in the thermal infrared range, places of associated gas flaring on stationary offshore oil platforms were recorded, the combustion products of which spread over long distances, polluting the atmosphere and the marine environment. The study carried out on the basis of satellite monitoring illustrates the possibility of establishing a relationship between the state of the natural environment of a biosphere reserve and external influences.
Keywords: wetlands, specially protected natural areas, ecosystems, satellite monitoring, sea level fluctuations, pollution, vegetation and water indices
Full text

References:

  1. Alkhimenko A. I., Influence of hydrometeorological factors on the distribution of oil products in reservoirs, Gidrotekhnicheskoe stroitel’stvo, 1989, No. 4, pp. 28–33 (in Russian).
  2. Baldina E. A., Labutina I. A., Remote sensing and mapping of the Volga River delta, Vestnik Moskovskogo universiteta, Ser. 5: “Geografiya”, 2011, No. 2, pp. 78–84 (in Russian).
  3. Bekmukhamedov B. E., Balakai L. A., Kaipov I. V., Remote Sensing Monitoring of Oil Spills on the Water Surface of the Caspian Sea, Gidrometeorologiya i ekologiya, 2016, No. 2, pp. 114–124 (in Russian).
  4. Bystrova I. V., Smirnova T. S., Bychkova D. A., Melikhov M. S., Environmental problems at development of the shelf of North-West Prikaspiya, Geologiya, geografiya i global’naya energiya, 2018, No. 2(69), pp. 81–86 (in Russian).
  5. Vereshchaka T. V., Kurbatova I. E., Baranova E. V., Map of long-term variability of the coastline of the Northern Caspian and its electronic version, Geodeziya i kartografiya, 1999, No. 10, pp. 35–42 (in Russian).
  6. Vestnik of Commission of the Russian Federation for UNESCO, 50 years of the UNESCO program “Man and the Biosphere”, Special edition, 2021, 59 p. (in Russian), available at: http://unesco.ru/wp content/uploads/archive/UNE_BIO21_Preview.pdf.
  7. Hydrometeorological Bulletin for the Northwestern Part of the Caspian Sea for 2019, Rosgidromet, FGBU “KaspMNITs“, 2020, 143 p. (in Russian).
  8. Dzhamirzoev G. S., Ataev Z. V., Idrisov I. A., Bratkov V. V., Balguev T. R., Biological and landscape diversity as a basis for the creation and operation of the biosphere reserve “Kizlyar Bay”, Izvestiya Dagestanskogo gosudarstvennogo pedagogicheskogo universiteta, 2016, No. 1, pp. 85–96 (in Russian).
  9. Dolgovremennyi monitoring i sokhranenie kolonial’nykh vodnykh ptits Severnogo Kaspiya v svyazi s kolebaniyami urovnya Kaspiiskogo morya (Long-term monitoring and conservation of colonial water birds of the Northern Caspian in connection with the Caspian Sea level fluctuations), Rogacheva E. V., Litvinova N. A. (eds.), Astrakhan: Volga, 2005, 270 p. (in Russian).
  10. Ezhegodnyi byulleten’ o sostoyanii i zagryaznenii morskoi sredy rossiiskogo sektora Kaspiiskogo morya za 2020 g. (Annual bulletin on the state and pollution of the marine environment of the Russian sector of the Caspian Sea for 2019), Rosgidromet, FGBU “KaspMNITs”, 2020, 22 p. (in Russian).
  11. Ezhegodnyi byulleten’ o sostoyanii i zagryaznenii morskoi sredy rossiiskogo sektora Kaspiiskogo morya za 2020 g. (Annual bulletin on the state and pollution of the marine environment of the Russian sector of the Caspian Sea for 2020), Rosgidromet, FGBU “KaspMNITs”, 2021, 62 p. (in Russian).
  12. Kartamysheva E. S., Ivanchenko D. S., Consequences of oil and gas production in the Caspian Sea, Molodoi uchenyi, 2017, No. 25(159), pp. 113–117 (in Russian), available at: https://moluch.ru/archive/159/44710/ (accessed 11.05.2022).
  13. Knyazev N. A., Lavrova O. Yu., Satellite monitoring of oil pollution spreading along the Syrian coast caused by the accident in Banyas on August 23, 2021, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 1, pp. 295–301 (in Russian), DOI: 10.21046/2070-7401-2022-19-1-295-301.
  14. Kurbatova I. E., Opasnost’ sgonno-nagonnykh yavlenii (Danger of surge phenomena), In: Atlas prirodnykh i tekhnogennykh opasnostei i riskov chrezvychainykh situatsii Yuzhnogo federal’nogo okruga Rossiiskoi Federatsii (Atlas of natural and man-made hazards and emergency risks of the Southern Federal District of the Russian Federation), Moscow: IPTs “Dizain. Informatsiya. Kartografiya”, 2007, pp. 220–224 (in Russian).
  15. Labutina I. A., Tarasov M. K., Study of the Selenga River sediment runoff distribution using satellite images, Geografiya i prirodnye resursy, 2018, No. 1, pp. 66–72 (in Russian), DOI: 10.21782/GIPR0206-1619-2018-1(66-72).
  16. Lavrova O. Yu., Mityagina M. I., Satellite monitoring of surface film pollution of the Black Sea, Issledovanie Zemli iz kosmosa, 2012, No. 3, pp. 48–65 (in Russian).
  17. Laguta A. A., Pogorelov A. V., Spatio-temporal variability of chlorophyll “a” concentration in the Krasnodar reservoir according to the satellite images’ data, Vodnoe khozyaistvo Rossii: problemy, tekhnologii, upravlenie, 2021, No. 4, pp. 67–84 (in Russian), DOI: 10.35567/1999-4508-2021-4-4.
  18. Mityagina M. I., Lavrova O. Yu., Bocharova T. Yu., Satellite monitoring of oil pollution of the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 130–149 (in Russian).
  19. Monakhova G., Esina O., Tatarnikov V., Monakhov S., Assessment of Marine Environment Pollution in the areas of oil and gas production in the sea shelf, Zashchita okruzhayushchei sredy v neftegazovom komplekse, 2014, No. 1, pp. 32–37 (in Russian).
  20. Ovsienko E. S., Features of pollution of coastal waters of the Black Sea, Zashchita okruzhayushchei sredy v neftegazovom komplekse, 2000, No. 6–7, pp. 5–7 (in Russian).
  21. Problemy i perspektivy ispol’zovaniya poputnogo neftyanogo gaza v Rossii (Problems and Prospects for the Use of Associated Petroleum Gas in Russia), 2017, Moscow: Vsemirnyi fond dikoi prirody (WWF Russia), 2017, 34 p. (in Russian).
  22. Problemy populyatsii endemika Kaspiiskogo morya — kaspiiskogo tyulenya (Problems of the population of the endemic of the Caspian Sea — the Caspian seal), Kaspiiskii vestnik, 27 Apr. 2022 (in Russian), available at: http://casp-geo.ru/problemy-populyatsii-kaspijskogo-tyule/.
  23. Rusanov G. M., The bird population of the Volga River delta in terms of changes in the hydrological regime and anthropogenous load (1969–2010), Astrakhanskii vestnik ekologicheskogo obrazovaniya, 2013, No. 4(26), pp. 89–109 (in Russian).
  24. https://azertag.az/ru/xeber/Rasim_Sattarzade_Sdelat_dolgosrochnyi_prognoz_urovnya_Kaspiiskogo_morya_nevozmozhno-1674581.
  25. Tarasov M. K., Tutubalina O. V., Method for determining the turbidity of water in the Selenga River and the adjacent water area of Lake Baikal according to remote sensing data, Issledovanie Zemli iz kosmosa, 2018, No. 1, pp. 60–71 (in Russian), DOI: 10.7868/S020596141801-0017.
  26. Yankevsky A. V., Ganchenko D. D., Cherneeva E. V., Shcherba V. A., Environmental problems of oil and gas production on the shelf of the World Ocean, Internet-zhurnal NAUKOVEDENIE“, 2017, Vol. 9, No. 6, 8 p. (in Russian), available at: https://naukovedenie.ru/PDF/45TVN617.pdf.
  27. Adam E., Mutanga O., Rugege D., Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review, Wetlands Ecology and Management, 2010, Vol. 18, No. 3, pp. 281–296, DOI: 10.1007/s11273-009-9169-z.
  28. Chatterjee M., Massolo S., Sarkar S. K., Bhattacharya A. K., Bhattacharya B. D., Satpathy K. K., Saha S., An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines, Environmental Monitoring and Assessment, 2009, Vol. 150, No. 1–4, pp. 307–322, DOI: 10.1007/s10661-008-0232-7.
  29. Fassoni-Andrade A. C., Fleischmann A. S., Papa F., de Paiva R. C. D., Wongchuig S., Melack J. M., Moreira A. A., Paris A., Ruhoff A., Barbosa C., Maciel D. A., Novo E., Durand F., Frappart F., Aires F., Abrahão G. M., Ferreira-Ferreira J., Espinoza J. C., Laipelt L., Costa M. H., Espinoza-Villar R., Calmant S., Pellet V., Amazon hydrology from space: Scientific advances and future challenges, Reviews of Geophysics, 2021, Vol. 59, e2020RG000728, 97 p., https://doi. org/10.1029/2020RG000728.
  30. Gilmore M. S., Wilson E. H., Barrett N., Civco D. L., Prisloe S., Hurd J. D., Chadwick C., Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh, Remote Sensing of Environment, 2008, Vol. 112, No. 11, pp. 4048–4060, DOI: 10.1016/j.rse.2008.05.020.
  31. Mishra S., Mishra D. R., Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters, Remote Sensing of Environment, 2012, No. 117, pp. 394–406, DOI: 10.1016/j.rse.2011.10.016.
  32. Yamazaki D., Trigg, M. A., Ikeshima D., Development of a global ~90 m water body map using multi-temporal Landsat images, Remote Sensing of Environment, 2015, Vol. 171, pp. 337–351, https://doi.org/10.1016/j.rse.2015.10.014.