ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 280-290

New regions of short-period internal wave generation in the Laptev Sea revealed from Sentinel-1 data

I.E. Kozlov 1 , A.V. Kuzmin 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 15.08.2022
DOI: 10.21046/2070-7401-2022-19-4-280-290
The paper presents the results of the analysis of short-period internal waves (SIWs) in the Laptev Sea obtained during processing of Sentinel 1A/B satellite imagery for the summer-autumn period of 2020. Based on the analysis of 728 radar images, 1659 surface manifestations of SIWs were identified, maps of the SIW probability and their main spatial characteristics were plotted. Most of the SIW manifestations were recorded at the end of the summer-autumn period, which could be associated with both more pronounced vertical stratification and a larger ice-free area. It is shown that the most intense SIW generation in the Laptev Sea occurs at the shelf break region north of the New Siberian Islands and at the exit from the Khatanga Bay. These areas are characterized by intense tidal currents, and the highest values of barotropic tidal energy density and its dissipation rate. Comparison of the results of observations for 2011 and 2020 showed that the main areas of concentration of SIW manifestations are similar, but have become much wider. A number of new areas of stable SIW generation have been identified in the Vilkitsky Strait and on the southeastern shelf of the Kara Sea, to the west of Kotelny Island, above deep water in the southeastern part of the Amundsen Basin, as well as to the north of Novaya Sibir Island. As a result of satellite data processing for 2020, an order of magnitude more SIW manifestations were identified compared to 2011, which confirms the effectiveness of using satellite SAR data to identify new regions of SIW formation and assess their impact on the Arctic climate.
Keywords: short-period internal waves, tidal currents, satellite radar images, Laptev Sea, Arctic Ocean
Full text


  1. Zubkova E. V., Kozlov I. E., Kudryavtsev V. N., Spaceborne SAR observations of short-period internal waves in the Laptev Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 99–109 (in Russian), DOI: 10.21046/2070-7401-2016-13-6-99-109.
  2. Kagan B. A., Timofeev A. A., Dynamics and energetics of tides in the Laptev Sea: the results of high-resolving modeling of the surface semidiurnal tide M2, Fundamentalnaya i prikladnaya gidrofizika, 2020, Vol. 13, No. 1, pp. 15–23 (in Russian), DOI: 10.7868/S2073667320010025.
  3. Morozov E. G., Pisarev S. V., Internal waves and polynya formation in the Laptev Sea, Doklady Earth Sciences, 2004, Vol. 398, No. 7, pp. 983–986.
  4. Svergun E. I., Zimin A. V., Atadzhanova O. A., Zhegulin G. V., Romanenkov D. A., Konik A. A., Kozlov I. E., Short-Period Internal Waves in the Coastal Zone of the Barents Sea According to Expedition and Satellite Observation, Fundamental and Applied Hydrophysics, 2020, Vol. 13, No. 4, pp. 78–86 (in Russian), DOI: 10.7868/S2073667320040073.
  5. Talipova T. G., Polukhin N. V., Kurkin A. A., Lavrenov I. V., Modeling the transformation of internal wave solitons on the Laptev Sea shelf, Izvestiya Akademii inzhenernykh nauk im. A. M. Prokhorova. Ser.: Prikladnaya matematika i mekhanika, 2003, No. 4, pp. 3–16 (in Russian).
  6. Carr M., Sutherland P., Haase A., Evers K. U., Fer I., Jensen A., Kalisch H., Berntsen J., Parau E., Thiem O., Davies P. A., Laboratory Experiments on Internal Solitary Waves in Ice-Covered Waters, Geophysical Research Letters, 2019, Vol. 46, No. 21, pp. 12230–12238, DOI: 10.1029/2019GL084710.
  7. Erofeeva S., Egbert G., Arc5km2018: Arctic Ocean Inverse Tide Model on a 5 kilometer grid, 2018, Arctic Data Center, 2020, DOI: 10.18739/A21R6N14K.
  8. Fer I., Koenig Z., Kozlov I. E., Ostrowski M., Rippeth T. P., Padman L., Bosse A., Kolas E., Tidally forced lee waves drive turbulent mixing along the Arctic Ocean margins, Geophysical Research Letters, 2020, Vol. 47, No. 16, Art. No. e2020GL088083, 10 p., DOI: 10.1029/2020GL088083.
  9. Kagan B. A., Timofeev A. A., High-Resolution Modeling of Semidiurnal Internal Tidal Waves in the Laptev Sea in the Ice-Free Period: Their Dynamics and Energetics, Izvestiya, Atmospheric and Oceanic Physics, 2020, Vol. 56, pp. 512–521, DOI: 10.1134/S0001433820050047.
  10. Kagan B. A., Romanenkov D. A., Sofina E. V., Tidal ice drift and ice-generated changes in the tidal dynamics/energetics on the Siberian Continental Shelf, Continental Shelf Research, 2008, Vol. 28, No. 3, pp. 351–368.
  11. Kozlov I., Kudryavtsev V., Zubkova E., Atadzhanova O., Zimin A., Romanenkov D., Myasoedov A., Chapron B. (2015a), SAR observations of internal waves in the Russian Arctic seas, IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2015, pp. 947–949.
  12. Kozlov I. E., Kudryavtsev V. N., Zubkova E. V., Zimin A. V., Chapron B. (2015b), Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 9, pp. 1073–1087, DOI: 10.1134/S0001433815090121.
  13. Kozlov I. E., Zubkova E. V., Kudryavtsev V. N., Internal solitary waves in the Laptev Sea: first results of spaceborne SAR observations, IEEE Geoscience and Remote Sensing Letters, 2017, Vol. 14, No. 11, pp. 2047–2051, DOI: 10.1109/LGRS.2017.2749681.
  14. Marchenko A. V., Morozov E. G., Kozlov I. E., Frey D. I., High-amplitude internal waves southeast of Spitsbergen, Continental Shelf Research, 2021, Vol. 227, Art. No. 104523, DOI: 10.1016/j.csr.2021.104523.
  15. Polyakov I. V., Pnyushkov A. V., Alkire B., Bauman M., Carmack C., Goszczko I., Guthrie J., Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean, Science, 2017, Vol. 356, No. 6335, pp. 285–291, DOI: 10.1126/science.aai8204.
  16. Polyakov I. V., Rippeth T. P., Fer I., Baumann T. M., Carmack E. C., Ivanov V. V., Janout M., Padman L., Pnyushkov A. V., Rember R., Intensification of Near-Surface Currents and Shear in the Eastern Arctic Ocean, Geophysical Research Letters, 2020, Vol. 47, No. 16, Art. No. e2020GL089469, 9 p., DOI: 10.1029/2020GL089469.
  17. Rippeth T. P., Vlasenko V., Stashchuk N., Scannell B. D., Green J. A. M., Lincoln B. J., Bacon S., Tidal conversion and mixing poleward of the critical latitude (an Arctic case study), Geophysical Research Letters, 2017, Vol. 4, No. 24, pp. 12349–12357, DOI: 10.1002/2017GL075310.
  18. Zimin A. V., Kozlov I. E., Atadzhanova O. A., Chapron B., Monitoring short-period internal waves in the White Sea, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 951–960, DOI: 10.1134/S0001433816090309.