ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 281-294

Variability of sea level and circulation in the North Atlantic from satellite altimetry

V.N. Malinin 1 , Ya.I. Angudovich 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 08.06.2022
DOI: 10.21046/2070-7401-2022-19-3-281-294
The paper discusses the relationship between interannual sea level fluctuations and the system of currents in the area of the North Atlantic Anticyclonic Water Gyre (NAWC) according to satellite altimetry (1993–2019). The initial data was the base of monthly average data on the sea level of the Copernicus reanalysis archive GLOBAL_REANALYSIS_PHY_001_030. A clearly expressed relationship between the annual discharges of the Florida Current and the level gradient in the section of 25° latitude between 80–78° W was revealed (r = 0.80). Calculation of interannual sea level changes on the latitudinal section 26° for its individual sections and across the entire North Atlantic (NA) within 80–15° W, which is a reference in the monitoring of the Atlantic meridional overturning circulation (AMOC), was performed. Annual estimates of the level gradient Δh and its average values hav between the extreme points of the sections were considered. A high positive correlation between Δh and hav was revealed for sections 70–25° W (r = 0.81) and 80–15° W (r = 0.71), as well as the North Atlantic Oscillation with Δh and hav on these sections. It is shown that, despite the sharp weakening of the AMOS until 2010, later on, its relative power recovers almost to the average value. Obviously, the weakening of AMOS until 2010 is only the negative phase of its longer fluctuations. Statistical parametrization of average annual values of water transport at latitude 26° N was performed north and south (AMOC and QUMO) according to ocean level data at this latitude. Regression equations are obtained, which, according to the Δh and havdata, quite accurately (77–92 %) describe the dispersion of the AMOC and QUMO time series.
Keywords: North Atlantic, sea level, currents, North Atlantic Subtropical Gyre, Atlantic meridional overturning circulation, self-oscillating system
Full text

References:

  1. Baryshevskaya G. I., Techeniya sistemy Gol’fstrim i temperaturnyi rezhim Severnoi Atlantiki (Currents of the Gulf Stream system and the temperature regime of the North Atlantic), Moscow: Gidrometeoizdat, 1990, 141 p. (in Russian).
  2. Duvanin A. I., On the model of interaction between macroprocesses in the ocean and atmosphere, Okeanologiya, 1968, Vol. 8, No. 4, pp. 571–580 (in Russian).
  3. Karlin L. N., Malinin V. N., Gordeeva S. M., Variability of hydrophysical characteristics in the Gulf Stream, Okeanologiya, 2013, Vol. 53, No. 4, pp. 454–462 (in Russian), DOI: 10.7868/S0030157413040047.
  4. Malinin V. N., Statisticheskie metody analiza gidrometeorologicheskoi informatsii (Statistical methods for the analysis of hydrometeorological information), Saint Petersburg: Izd. RGGMU, 2008, 408 p. (in Russian).
  5. Malinin V. N., Angudovich Ya. I., Variability of the level of the seas of the North Atlantic according to altimetry data, Obshchestvo. Sreda. Razvitie, 2021, No. 4, pp. 79–83 (in Russian).
  6. Malinin V. N., Shmakova V. Yu., Variability of the energy-active ocean zones in North Atlantic, Fundamental and applied climatology, 2018, No. 4, pp. 55–70 (in Russian), DOI: 10.21513/2410-8758-2018-4-55-70.
  7. Malinin V. N., Gordeeva S. M., Shevchuk O. I., Changes in the global sea level in the current century, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 9–22 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-9-22.
  8. Smirnov N. P., Vorobyov V. N., Drozdov V. V., Cyclonic center of atmosphere and ocean action in North Atlantic, Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2010, No. 15, pp. 117–134 (in Russian).
  9. Stepanov V. N., The Atlantic meridional heat and volume transports from ocean models and observations, Trudy Gidrometeorologicheskogo nauchno-issledovatel’skogo tsentra Rossiiskoi Federatsii, 2017, No. 364, pp. 104–130 (in Russian).
  10. Bryden H. L., King B. A., McCarthy G. D., McDonagh E. L., Impact of a 30 % reduction in Atlantic meridional overturning during 2009–2010, Ocean Science, 2014, Vol. 245, No. 10, pp. 683–691.
  11. Buckley M. W., Marshall J., Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Reviews of Geophysics, 2016, Vol. 54, pp. 5–63, https://doi.org/10.1002/2015RG000493.
  12. Ceasar L., Rahmstorf S., Robinson A., Feulner G., Saba V., Observed fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 2018, No. 556, pp. 191–196, DOI: 14.1038/s41586-018-0006-5.
  13. Chafik L., Nilsen J. E., Dangendorf S., Reverdin G., Frederikse T ., North Atlantic Ocean Circulation and Decadal Sea Level Change During the Altimetry Era, Scientific Reports, 2019, Vol. 9, Art. No. 1041, 9 p., https://doi.org/10.1038/s41598-018-37603-6.
  14. Chen C., Wang G., Xie S-P, Liu W., Why Does Global Warming Weaken the Gulf Stream but Intensify the Kuroshio? J. Climate, 2020, Vol. 32, pp. 7437–7451, DOI: 10.1175/JCLI-D-18-0895.1.
  15. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC Report, Stocker T. F., Qin D., Plattner G. K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. (eds.), Cambridge, N. Y.: Cambridge University Press, 2013, 1535 p.
  16. Curry J., Sea Level and Climate Change: Special Report. Climate Forecast Applications Network, 2018, 79 p., available at: https://curryja.files.wordpress.com/2018/11/special-report-sea-level-rise3.pdf.
  17. Dong S., Baringer M. O., Goni G. J., Slow Down of the Gulf Stream during 1993–2016, Scientific Reports, 2019, Vol. 9, Art. No. 6672, 10 p., https://doi.org/10.1038/s41598-019-42820-8.
  18. Ezer T., Detecting changes in the transport of the Gulf Stream and the Atlantic overturning circulation from coastal sea level data: The extreme decline in 2009–2010 and estimated variations for 1935–2012, Global and Planetary Change, 2015, Vol. 129, pp. 23–36.
  19. Frajka-Williams E., Ansorge I. J., Baehr J., Bryden H. L., Chidichimo M. P., Cunningham S. A., Danabasoglu G., Dong S., Donohue K. A., Elipot S., Atlantic Meridional Overturning Circulation: Observed Transport and Variability, Frontiers in Marine Science, 2019, Vol. 6, Art. No. 260, 19 p., DOI: 10.3389/fmars.2019.00260.
  20. Frajka-Williams E., Moat B. I., Smeed D. A., Rayner D., Johns W. E., Baringer M. O., Volkov D., Collins J., Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2020 (v2020.1), British Oceanographic Data Centre — Natural Environment Research Council UK, 2021, DOI: 10.5285/cc1e34b3-3385-662b-e053-6c86abc03444.
  21. Hobbs W. R., Willis J. K., Midlatitude North Atlantic heat transport: A time series based on satellite and drifter data, J. Geophysical Research: Oceans, 2012, Vol. 117, Art. No. C01008, 14 p.
  22. Ivchenko V. O., Sidorenko D., Danilov S., Losch M., Schröter J., Can sea surface height be used to estimate oceanic transport variability? Geophysical Research Letters, 2011, Vol. 38, Iss. 11., Art. No. L11601, 5 p., DOI: 10.1029/2011GL047387.
  23. Kopp R. E., Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? Geophysical Research Letters, 2013, Vol. 40, pp. 3981–3985.
  24. Lellouche J.-M., Greiner E., Le Galloudec O., Garric G., Regnier C., Drevillo M., Benkiran M., Testut C.-E., Romain B.-B., Gasparin F., Hernandez O., Levier B., Drillet Y., Remy E., Le Traon P.-Y., Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high resolution system, Ocean Science, 2018, Vol. 14, pp. 1093–1126, https://doi.org/10.5194/os-14-1093-2018.
  25. Lellouche J.-M., Greiner E., Bourdallé-Badie R., Garric G., Melet N., Drévillon M., Bricaud C., Hamon M., Le Galloudec O., Regnier C., Candela T., Testut C.-E., Gasparin F., Ruggiero G., Benkiran M., Drillet Y., Le Traon P.-Y., The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis, Frontiers in Earth Science, 2021, Vol. 9, Art. No. 698876, 27 p., DOI: 10.3389/feart.2021.698876.
  26. McCarthy G. D., Smeed D. A., Johns W. E., Frajka-Williams E., Moat B. I., Rayner D., Baringer M. O., Meinen C. S., Collins J., Bryden H. L., Measuring the Atlantic meridional overturning circulation at 26°N, Progress in Oceanography, 2015, Vol. 130, pp. 91–111, DOI: 10.1016/j.pocean.2014.10.006.
  27. Palter J. B., The role of the Gulf Stream in European climate, Annul Review of Marine Science, 2015, Vol. 7, pp. 113–137, https://doi.org/10.1146/annurev-marine-010814-015656.
  28. Park J. C., Sweet W. V., Accelerated sea level rise and Florida Current transport, Ocean Science, 2015, Vol. 11(4), pp. 607–615.
  29. Rahmstorf S., Box J. E., Michael G. F., Mann E., Robinson A., Rutherford S., Schaffernicht E. J., Exceptional twentieth-Century slowdown in Atlantic Ocean overturning circulation, Nature Climate Change, 2015, pp. 475–480, DOI: 10.1038/nclimate2554.
  30. Repschläger J., Garbe-Schönberg D., Weinelt M., Schneider R., Holocene evolution of the North Atlantic subsurface transport, Climate in the Past, 2017, Vol. 13, pp. 333–344.
  31. Smeed D. A., McCarthy G., Cunningham S. A., Frajka-Williams E., Rayner D., Johns W. E., Meinen C. S., Baringer M. O., Moat B. I., Duchez A., Bryden H. L., Observed decline of the Atlantic meridional overturning circulation 2004 to 2012, Ocean Science, 2014, Vol. 10, pp. 29–38, DOI: 10.5194/os-10-29-2014.
  32. Smeed D. A., Josey S., Johns W., Moat B., Frajka-Williams E., Rayner D., Meinen C. S., Baringer M. O., Bryden H. L., McCarthy G. D., The North Atlantic Ocean is in a state of reduced overturning, Geophysical Research Letters, 2018, Vol. 45, pp. 1527–1533, DOI: 10.1002/2017GL076350.
  33. Srokosz M. A., Bryden H. L., Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises, Science, 2015, Vol. 348(6241), Art. No. 1255575, DOI: 10.1126/science.1255575.
  34. Srokosz M., Baringer M., Bryden H., Cunningham S., Delworth T., Lozier S., Marotzke J., Sutton R., Past, present, and future changes in the Atlantic meridionaloverturning circulation, Bull. American Meteorological Society, 2012, Vol. 93(11), pp. 1663–1676, http://dx.doi.org/10.1175/BAMS-D-11-00151.1.
  35. Volkov D. L., Monitoring the variability of sea level and surface circulation with satellite altimetry, 2004, 157 p., available at: https://www.researchgate.net/publication/27685963.