Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 186-202
Spatio-temporal distribution and origins of windthrow events in the forest zone of Western Siberia in 2001–2020
A.N. Shikhov
1 , A.V. Chernokulsky
2, 3 , I.O. Azhigov
1 1 Perm State University, Perm, Russia
2 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
3 Institute of Geography RAS, Moscow, Russia
Accepted: 26.05.2022
DOI: 10.21046/2070-7401-2022-19-3-186-202
The paper presents the main characteristics of the spatial and temporal distribution of windthrow events in the forest zone of Western Siberia for the period 2001–2020. Windthrow data is obtained from Landsat, Sentinel-2 satellite images, Global Forest Change data, and high-resolution satellite images from open map services. We used weather stations observations, images from meteorological satellites, and information on hazardous weather events to define the dates and time of storm events. The compiled database includes 25 774 elementary damaged areas, which are grouped to 265 different windthrow areas. These windthrow areas are associated with 158 different storm events. The data is available at https://doi.org/10.6084/m9.figshare.19582786.v1. The total area of windthrow is 508.3 km2 (0.04 % of the total forested area), which is 4 times less than in the European Russia (ER) for the same period. Over 67% of the windthrow events are caused by tornadoes, they also account for 25.4 % of the total area, which is substantially more than the same proportion for ER. Squalls and non-convective windstorms account for 30 % (2.5 %) of cases and 40 % (34.5 %) of the damaged area, respectively. The maximum density of windthrow events was found in the Kemerovo region, as well as in the west of the Tomsk region and in the southeast of the Khanty-Mansiysk Autonomous region. The largest number of windthrow events was reported in 2007 and 2010. Tornadoes and squalls causing windthrow are most often observed in June, while windthrow caused by non-convective storms were observed in October or November (in the Ural and Kuznetsk Alatau mountains). We found several large squall and tornado outbreaks. However, windthrow area associated with them is about 10 times lower comparing with the strongest storm events observed in ER. In general, the total wind-damaged area is 77.5 times less than the total area of stand-replacing fires for the same period.
Keywords: windthrow, tornadoes, squalls, non-convective storms, spatio-temporal distribution, Western Siberia, Landsat, Sentinel-2, Global Forest Change
Full textReferences:
- Alesenkov Yu. M., Pozdeev E. G., Shlykova N. A., Terinov N. N., Ivanina N. A., On the consequences of the 1995 windthrow in the Visimsky State Reserve, Lesa Urala i khozyaistvo v nikh, Ekaterinburg, 1998, Vol. 20, pp. 272–278 (in Russian).
- Alesenkov Yu. M., Mishin A. S., Uspin A. A., Yakushev A. B., The impact of storm winds on the forests of the Ural’s natural reserves, Ekologicheskie issledovaniya v Visimskom biosfernom zapovednike, Ekaterinburg, 2006, pp. 41–47 (in Russian).
- Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Satellite-based mapping of the vegetation cover of Russia), Moscow: IKI, 2016, 208 p. (in Russian).
- Krylov A. M., Malakhova E. G., Vladimirova N. A., Identification and assessment of forest areas damaged by windfalls in 2009–2010 by means of remote sensing, Izvestiya Sankt-Peterburgskoi lesotekhnicheskoi akademii, 2012, Vol. 200, pp. 197‒207 (in Russian).
- Melnik M. A., Melnik S. A., Strong wind as factor of hazards for forest management in the southern taiga zone of Western Siberia, Interekspo Geo-Sibir’, 2016, Vol. 3(3), pp. 105–109 (in Russian).
- Petukhov I. N., Rol’ massovykh vetrovalov v formirovanii lesnogo pokrova v podzone yuzhnoi taigi (Kostromskaya oblast’): Diss. kand. biol. nauk (The role of massive windthrows in the forest cover formation in the southern taiga subzone (Kostroma region), Cand. biol. sci. thesis), Kostroma, 2016, 150 p. (in Russian).
- Razuvaev V. N., Bulygina O. N., Korshunova N. N., Kleshchenko L. K., Kuznetsova V. N., Trofimenko L. T., Sherstyukov A. B., Shvets’ N. V., Davletshin S. G., Zvereva G. N., Nauchno-prikladnoi spravochnik “Klimat Rossii” (Scientific and applied reference book “Climate of Russia”), Certificate of state registration of data base No. 2020621470 (RU), Reg. 18.08.2020 (in Russian).
- Rozhkov A. A., Kozak V. G., Ustoichivost’ lesov (Forest’s sustainability), Moscow: Agropromizdat, 1989, 239 p. (in Russian).
- Chernokulsky A. V., Kurgansky M. V., Mokhov I. I., Selezneva E. V., Zakharchenko D. I., Shikhov A. N., Azhigov I. O., Antonescu B., Kuhne T., Tornadoes in the Russian regions, Russian Meteorology and Hydrology, 2021, Vol. 46. No. 2, pp. 69−82, DOI: 0.3103/S1068373921020023.
- Chernokulsky A. V., Eliseev A. V., Kozlov F. A., Korshunova N. N., Kurganskii M. V., Mokhov I. I., Semenov V. A., Shvets’ N. V., Shikhov A. N., Yarynich Yu. I., Convective hazardous weather events in Russia: observed changes according to varioius data, Russian Meteorology and Hydrology, 2022, Vol. 47 (in Russian, in press).
- Shikhov A. N., Opasnye meteorologicheskie yavleniya, svyazannye s vetrom, i ikh vozdeistvie na lesnoi pokrov Evropeiskoi territorii Rossii: metody identifikatsii, zakonomernosti prostranstvenno-vremennogo raspredeleniya i usloviya vozniknoveniya: Avtoref. diss. kand. geogr. nauk (Wind-related hazardous weather events and their impact of the forest cover in in the European territory of Russia: identification methods, patterns of the spatio-temporal distribution and formation environments, Ext. abstract Doct. geogr. sci. thesis), Kazan, 2022, 43 p. (in Russian).
- Baumann M., Ozdogan M., Wolter P. T., Krylov A. M., Vladimirova N. A., Radeloff V. C., Landsat remote sensing of forest windfall disturbance, Remote Sensing of Environment, 2014, Vol. 143, pp. 171–179, DOI: 10.1016/j.rse.2013.12.020.
- Chernokulsky A. V., Shikhov A. N., 1984 Ivanovo tornado outbreak: Determination of actual tornado tracks with satellite data, Atmospheric Research, 2018, Vol. 207, pp. 111–121, DOI: 10.1016/j.atmosres.2018.02.011.
- Chernokulsky A., Kurgansky M., Mokhov I., Shikhov A., Azhigov I., Selezneva E., Zakharchenko D., Antonescu B., Kühne T. (2020a), Tornadoes in Northern Eurasia: from the Middle Age to the Information Era, Monthly Weather Review, 2020, Vol. 148, pp. 3081‒3111, DOI: 10.1175/MWR-D-19-0251.1.
- Chernokulsky A., Shikhov A., Bykov A., Azhigov I. (2020b), Satellite-Based Study and Numerical Forecasting of Two Tornado Outbreaks in the Ural Region in June 2017, Atmosphere, 2020, Vol. 11, Art. No. 1146, 34 p., DOI: 10.3390/atmos11111146.
- Chernokulsky A., Shikhov A., Bykov A., Kalinin N., Kurgansky M., Sherstyukov B., Yarinich Y., Diagnosis and modelling of two destructive derecho events in European Russia in the summer of 2010, Atmospheric Research, 2022, Vol. 267, Art. No. 105928, 17 p., https://doi.org/10.1016/j.atmosres.2021.105928.
- Dyukarev E. A., Pologova N. N., Golovatskaya E. A., Dyukarev A. G., Forest cover disturbances in the south taiga of West Siberia, Environmental Research Letters, 2011, Vol. 6(3), Art. No. 035203, 10 p., https://doi.org/10.1088/1748-9326/6/3/035203.
- Giglio L., Schroeder W., Justice C. O., The collection 6 MODIS active fire detection algorithm and fire products, Remote Sensing of Environment, 2016, Vol. 178, pp. 31–41, DOI: 10.1016/j.rse.2016.02.054.
- Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S. V., Goetz S. J., Loveland T. R., Kommareddy A., Egorov A., Chini L., Justice C. O., Townshend J. R. G., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 2013, Vol. 342, pp. 850–853, DOI: 10.1126/science.1244693.
- Haylock M. R., European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models, Natural Hazards and Earth System Sciences, 2011, Vol. 11, pp. 2847–2857, DOI: 10.5194/nhess-11-2847-2011.
- Johns R. H., Hirt W. D., Derechos: Widespread convectively induced windstorms, Weather and Forecasting, 1987, Vol. 2, pp. 32–49, DOI: 10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.
- Krylov A., Potapov P., Loboda T., Tyukavina A., Turubanova S., Hansen M. C., McCarty J. L., Remote sensing estimates of stand-replacement fires in Russia, 2002–2011, Environmental Research Letters, 2014, Vol. 9(10), Art. No. 105007, 9 p., DOI: 10.1088/1748-9326/9/10/105007.
- Lassig R., Mocalov S. A., Frequency and characteristics of severe storms in the Urals and their influence on the development, structure and management of the boreal forests, Forest Ecology and Management, 2000, Vol. 135, pp. 179–194, DOI: 10.1016/S0378-1127(00)00309-1.
- Mitchell S. J., Wind as a natural disturbance agent in forests: a synthesis, Forestry, 2013, Vol. 86, pp. 147–157, DOI: 10.1093/forestry/cps058.
- Potapov P. V., Turubanova S. A., Tyukavina A., Krylov A. M., McCarty J. L., Radeloff V. C., Hansen M. C., Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive, Remote Sensing of Environment, 2015, Vol. 159, pp. 28–43, DOI: 10.1016/j.rse.2014.11.027.
- Schelhaas M.-J., Nabuurs G.-J., Schuck A., Natural disturbances in the European forests in the 19th and 20th centuries, Global Change Biology, 2003, Vol. 9(11), pp. 1620–1633, DOI: 10.1046/j.1365-2486.2003.00684.x.
- Seidl R., Fernandes P. M., Fonseca T. F., Gillet F., Jönsson A. M., Merganičová K., Netherer S., Arpaci A., Bontemps J.-D., Bugmann H., González-Olabarria J. R., Lasch P., Meredieu C., Moreira F., Schelhaas M.-J., Mohren F., Modelling natural disturbances in forest ecosystems: A review, Ecological Modelling, 2011, Vol. 22(4), pp. 903–924, DOI: 10.1016/j.ecolmodel.2010.09.040.
- Senf C., Seidl R., Storm and fire disturbances in Europe: Distribution and trends, Global Change Biology, 2021, Vol. 27, pp. 3605–3619, DOI: 10.1111/gcb.15679.
- Shikhov A. N., Chernokulsky A. V., A satellite-derived climatology of unreported tornadoes in forested regions of northeast Europe, Remote Sensing of Environment, 2018, Vol. 204, pp. 553‒567, DOI: 10.1016/j.rse.2017.10.002.
- Shikhov A. N., Perminova E. S., Perminov S. I., Satellite based analysis of the spatial patterns of fire and storm related forest disturbances in the Ural region, Russia, Natural Hazards, 2019, Vol. 97(1), pp. 283–308, DOI: 10.1007/s11069-019-03642-z.
- Shikhov A. N., Chernokulsky A. V., Azhigov I. O., Semakina A. V., A satellite-derived database for stand-replacing windthrow events in boreal forests of European Russia in 1986–2017, Earth System Science Data, 2020, Vol. 12, pp. 3489–3513, DOI: 10.5194/essd-12-3489-2020.
- Shikhov A., Chernokulsky A., Azhigov I., Windthrow events in the forest zone of Western Siberia in 2001–2020, figshare.com, 2022, https://doi.org/10.6084/m9.figshare.19582786.v1.
- Ulanova N. G., The effects of windthrow on forests at different spatial scales: a review, Forest Ecology and Management, 2000, Vol. 135, pp. 155–167, DOI: 10.1016/S0378-1127(00)00307-8.
- Venäläinen A., Lehtonen I., Laapas M., Ruosteenoja K., Tikkanen O-P., Viiri H., Ikonen V-P., Peltola H., Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review, Global Change Biology, 2020, Vol. 26(8), pp. 4178–4196, DOI: 10.1111/gcb.15183.