ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 233-244

Estimation of reforestation on abandoned agricultural lands in European Russia using long-term changes in spectral response

E.A. Terekhin 1 
1 Belgorod State National Research University, Belgorod, Russia
Accepted: 22.06.2022
DOI: 10.21046/2070-7401-2022-19-3-233-244
Reforestation is a significant natural change in the vegetation cover of abandoned agricultural lands in European Russia. The results describing the territorial differences in reforestation on abandoned lands typical of the forest, forest-steppe and steppe natural zones of European Russia were presented. Differences in reforestation are observed between natural zones and within them — within the boundaries of physical-geographical subzones. The highest intensity of reforestation was recorded in the south of the forest zone — in the subzone of broad-leaved-pine forests. The Mann – Kendall tau value and the slope coefficient of NDVI linear trend, calculated on the basis of long-term series of values, can be indicators of spatial differences in reforestation. Both indicators are closely correlated with the average annual gain in forest cover. The range of variation in the Mann – Kendall tau values and the slope coefficient of the NDVI linear trend can be used to describe differences in the annual gain of abandoned land forest cover. Both indicators show spatial differences in the reforestation between the natural zones and within their boundaries.
Keywords: abandoned agricultural lands, reforestation, European Russia, vegetation indices, remote sensing
Full text

References:

  1. Baeva Yu. I., Kurganova I. N., Lopes de Gerenyu V. O., Ovsepyan L. A., Telesnina V. M., Tsvetkova Yu. D., Change in aggregate structure of various soil types during the succession of abandoned lands, Byulleten’ Pochvennogo instituta imeni V. V. Dokuchaeva, 2017, No. 88, pp. 47–74 (in Russian), DOI: 10.19047/0136-1694-2017-88-47-74.
  2. Vladychenskii A. S., Telesnina V. M., Chalaya T. A., Plant leaf-fall influence on biological activity of south taiga post-agrogenic soils, Vestnik Moskovskogo universiteta. Ser. 17: Pochvovedenie, 2012, No. 1, pp. 3–10 (in Russian).
  3. Ivanov A. I., Ivanova Zh. A., Sokolov I. V., Secondary development of unused land, Russian Agricultural Sciences, 2020, Vol. 46, No. 3, pp. 274–278, https://doi.org/10.3103/S1068367420030076.
  4. Kurganova I. N., Telesnina V. M., Lopes de Gerenyu V. O., Lichko V. I., Karavanova E. I., The dynamics of carbon pools and biological activity of retic albic podzols in southern taiga during the postagrogenic evolution, Eurasian Soil Science, 2021, Vol. 54, No. 3, pp. 337–351, DOI: 10.1134/S1064229321030108.
  5. Lyuri D. I., Goryachkin S. V., Karavaeva N. A., Denisenko E. A., Nefedova T. G., Dinamika sel’skokhozyaistvennykh zemel’ Rossii v XX veke i postagrogennoe vosstanovlenie rastitel’nosti i pochv (Dynamics of agricultural lands of Russia in XX century and postagrogenic restoration of vegetation and soils), Moscow: GEOS, 2010, 416 p. (in Russian).
  6. Terekhin E. A., Spatial analysis of tree vegetation of abandoned arable lands using their spectral response in forest-steppe zone of Central Chernozem Region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 142–156 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-142-156.
  7. Terekhin E. A. (2021a), Long-term changes in spectral response of abandoned agricultural lands in various climate and environmental conditions of European Russia in the early 21st century, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 111–122 (in Russian), DOI: 10.21046/2070-7401-2021-18-5-111-122.
  8. Terekhin E. A. (2021b), Indication of long-term changes in the vegetation of abandoned agricultural lands for the forest-steppe zone using NDVI time series, Computer Optics, 2021, Vol. 45, No. 2, pp. 245–252 (in Russian), DOI: 10.18287/2412-6179-CO-797.
  9. Shevyrnogov A. P., Pisman T. I., Kononova N. A., Botvich I. Yu., Larko A. A., Vysotskaya G. S., Seasonal dynamics of fallow land vegetation in Krasnoyarsk forest steppe according to ground and satellite data, Issledovanie Zemli iz kosmosa, 2018, No. 6, pp. 39–51 (in Russian), DOI: 10.31857/S020596140003367-4.
  10. Bonan G. B., Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests, Science, 2008, Vol. 320, No. 5882, pp. 1444–1449, DOI: 10.1126/science.1155121.
  11. Estel S., Kuemmerle T., Levers C., Baumann M., Hostert P., Mapping cropland-use intensity across Europe using MODIS NDVI time series, Environmental Research Letters, 2016, Vol. 10, No. 2, Art. No. 024015, 10 p., DOI: 10.1088/1748-9326/11/2/024015.
  12. Fradette O., Marty C., Faubert P., Dessureault P.-L., Paré M., Bouchard S., Villeneuve C., Additional carbon sequestration potential of abandoned agricultural land afforestation in the boreal zone: A modelling approach, Forest Ecology and Management, 2021, Vol. 499, Art. No. 119565, https://doi.org/10.1016/j.foreco.2021.119565.
  13. Goga T., Feranec J., Bucha T., Rusnák M., Sačkov I., Barka I., Kopecká M., Papčo J., Oťaheľ J., Szatmári D., Pazúr R., Sedliak M., Pajtík J., Vladovič J., A Review of the Application of Remote Sensing Data for Abandoned Agricultural Land Identification with Focus on Central and Eastern Europe, Remote Sensing, 2019, Vol. 11, No. 23, Art. No. 2759, 19 p., https://doi.org/10.3390/rs11232759.
  14. Heck E., de Beurs K. M., Owsley B. C., Henebry G. M., Evaluation of the MODIS collections 5 and 6 for change analysis of vegetation and land surface temperature dynamics in North and South America, ISPRS J. Photogrammetry and Remote Sensing, 2019, Vol. 156, pp. 121–134, https://doi.org/10.1016/j.isprsjprs.2019.07.011.
  15. Levers C., Schneider M., Prishchepov A. V., Estel S., Kuemmerle T., Spatial variation in determinants of agricultural land abandonment in Europe, Science of The Total Environment, 2018, Vol. 644, pp. 95–111, https://doi.org/10.1016/j.scitotenv.2018.06.326.
  16. Lisetskii F., Stolba V. F., Marinina O., Indicators of agricultural soil genesis under varying conditions of land use, Steppe Crimea, Geoderma, 2015, Vol. 239–240, pp. 304–316, https://doi.org/10.1016/j.geoderma.2014.11.006.
  17. Löw F., Prishchepov A. V., Waldner F., Dubovyk O., Akramkhanov A., Biradar C., Lamers J. P. A., Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series, Remote Sensing, 2018, Vol. 10, No. 2, 24 p., https://doi.org/10.3390/rs10020159.
  18. Nordén B., Olsen S. L., Haug S., Rusch G., Recent forest on abandoned agricultural land in the boreonemoral zone Biodiversity of plants and fungi in relation to historical and present tree cover, Forest Ecology and Management, 2021, Vol. 489, Art. No. 119045, 21 p., https://doi.org/10.1016/j.foreco.2021.119045.
  19. Robinson P. N., Allred W. B., Jones O. M., Moreno A., Kimball S. J., Naugle E. D., Erickson A. T., Richardson D. A., A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States, Remote Sensing, 2017, Vol. 9, No. 8, Art. No. 863, 14 p. https://doi.org/10.3390/rs9080863.
  20. Wang M., Wu J., Lafleur P. M., Luan J., Investigation of the climatological impacts of agricultural management and abandonment on a boreal bog in western Newfoundland, Canada, Science of The Total Environment, 2020, Vol. 711, Art. No. 134632, 10 p., https://doi.org/10.1016/j.scitotenv.2019.134632.
  21. Yin H., Brandão A., Buchner J., Helmers D., Iuliano B. G., Kimambo N. E., Lewińska K. E., Razenkova E., Rizayeva A., Rogova N., Spawn S. A., Xie Y., Radeloff V. C., Monitoring cropland abandonment with Landsat time series, Remote Sensing of Environment, 2020, Vol. 246, Art. No. 111873, https://doi.org/10.1016/j.rse.2020.111873.
  22. Zhu X., Xiao G., Zhang D., Guo L., Mapping abandoned farmland in China using time series MODIS NDVI, Science of The Total Environment, 2021, Vol. 755, Art. No. 142651, https://doi.org/10.1016/j.scitotenv.2020.142651.