ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 23-34

Satellite risk mapping of urban air overheating (by the example of Helsinki, Finland)

V.I. Gornyy 1 , S.G. Kritsuk 1 , I.Sh. Latypov 1 , A.B. Manvelova 1 , A.A. Tronin 1 
1 Saint Petersburg Scientific Research Center for Ecological Safety RAS, Saint Petersburg, Russia
Accepted: 05.05.2022
DOI: 10.21046/2070-7401-2022-19-3-23-34
An algorithm has been proposed and a methodology has been developed for satellite mapping of risks (probabilities) of exceeding the minimum mortality temperature by the average daily air temperature. Knowledge of these risks opens the possibility to estimate the economic damage due to an increase in the number of deaths caused by overheating. The urgency of the problem is determined by the observed global warming. The city of Helsinki (Finland) was chosen as the object of study. The materials for the study were a series of 32 scenes from Landsat series satellites obtained in the IR thermal range of the spectrum and the results of standard urgent observations at urban weather stations WMO ID 2978 and METAR EFHK Vantaa (airport) for the period 2007–2019. The result was a map of the risk of exceeding the temperature of the minimum mortality because of overheating of the urban environment, built up for the city of Helsinki. The heterogeneity of the spatial distribution of risks is shown. Industrial areas are characterized by high risks of overheating of the urban environment, and recreational areas are characterized by minimal risks. It is noted that the results obtained can be used as information support for the management decision-making system aimed at early fending off threats to environmental safety due to overheating of the urban environment because of global warming.
Keywords: city, heat island, satellite, air temperature, mapping, minimum mortality temperature, risk
Full text

References:

  1. Gornyy V. I., Shilin B. V., Yasinskii G. I., Teplovaya aerokosmicheskaya s″emka (Thermal aerospace and satellite flown survey survey), Moscow: Nedra, 1993, 128 p. (in Russian).
  2. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Kiselev A. V. Brovkina O. V., Fillippovich V. E., Stankevich S. A., Lubskii N. S., Thermophysical properties of land surface in urban area (by satellite remote sensing of Saint Petersburg and Kiev), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 51–66 (in Russian), DOI: 10.21046/2070-7401-2017-14-3-51-66.
  3. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Forecast of the surface temperature of the urban environment of St. Petersburg, based on satellite mapping of thermophysical properties, Vserossiyskaya nauchnaya konferentsiya s mezhdunarodnym uchastiem “Zemlya i kosmos” k stoletiyu akademika RAN K. Ya. Kondrat’eva (All-Russia Scientific Conf. with Intern. Participation “Earth and Space” Dedicated to the Centenary of Academician of the Russian Academy of Sciences K. Ya. Kondratiev), Proc. Conf., 2020, pp. 14–21 (in Russain).
  4. Grishchenko M. Yu., Chernulich K. K., Calculation of the air temperature values using the surface temperature values obtained by the thermal imagery (Case of Yuzhno-Kurilsk District), Regional’nye problemy distantsionnogo zondirovaniya Zemli: materialy 2-i Mezhdunarodnoi nauchoi konferentsii (Regional problems of remote sensing of the Earth: Proc. Conf.), 22–25 Sept. 2015, Krasnoyarsk, E. A. Vaganov, M. V. Noskov (eds.), 2015, pp. 251–255 (in Russian).
  5. Koppe Ch., Kovats S., Jendritzky G., Menne B., Heat-waves: risks and responses, World Health Organization, Regional Office for Europe, 2005, Ser. Health and Global Environmental Change, No. 2, 124 p., available at: https://apps.who.int/iris/handle/10665/107552.
  6. Korn G. A., Korn T. M., Mathematical Handbook for Scientists and Engineers, McGraw Hill Book Company, 1968, 926 p.
  7. Kritsuk S. G., Gornyy V. I., Latypov I. Sh., Pavlovskii A. A., Tronin A. A., Satellite risk mapping of urban surface overheating (by the example of Saint Petersburg), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 34–44 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-34-44.
  8. Otsenka riska i ushcherba ot klimaticheskikh izmenenii, vliyayushchikh na povyshenie urovnya zabolevaemosti i smertnosti v gruppakh naseleniya povyshennogo riska: Metodicheskie rekomendatsii (Assessing the risk and damage from climate change affecting the increase in morbidity and mortality in high-risk population groups: Guidelines), Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2012, 48 p. (in Russian).
  9. Allen M. R., Dube O. P., Solecki W., Aragón-Durand F., Cramer W., Humphreys S., Kainuma M., Kala J., Mahowald N., Mulugetta Y., Perez R., Wairiu M., Zickfeld K., Global warming of 1.5 °C, An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Geneva, Switzerland, 2018, 630 p., available at: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf.
  10. Bornstein R. D., Observations of the Urban Heat Island Effect in New York City, J. Applied Meteorology, 1968, Vol. 7, No. 4, pp. 575–582.
  11. Chittaranjan A., Understanding relative risk, odds ratio, and related terms: as simple as it can get, J. Clinical Psychiatry, 2015, Vol. 76(7), pp. e857–e861, DOI: 10.4088/JCP.15f10150, available at: https://pubmed.ncbi.nlm.nih.gov/26231012.
  12. Garbero V., Milelli M., Bucchignani E., Mercogliano P., Varentsov M., Rozinkina I., Rivin G., Blinov D., Wouters H., Schulz J.-P., Schättler U., Bassani F., Demuzere M., Repola F., Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities, Atmosphere, 2021, Vol. 12, Art. No. 237, 24 p., https://doi.org/10.3390/atmos12020237.
  13. Geletič J., Lehnert M., Krč P., Resler J., Krayenhoff E. S., High-Resolution Modelling of Thermal Exposure during a Hot Spell: A Case Study Using PALM-4U in Prague, Czech Republic, Atmosphere, 2021, Vol. 12, Art. No. 175, 28 p., https://doi.org/10.3390/atmos12020175.
  14. Gutierrez E., Gonzalez J. E., Martilli A., Bornstein R., Arend M., Simulations of a Heat-Wave Event in New York City Using a Multilayer Urban Parameterization, J. Applied Meteorology and Climatology, 2015, Vol. 54, pp. 283–301, DOI: 10.1175/JAMC-D-14-0028.1.
  15. Ho H. C., Knudby A., Huang W., Spatial Framework to Map Heat Health Risks at Multiple Scales, Intern. J. Environmental Research and Public Health, 2015, Vol. 12, pp. 16110–16123, DOI: 10.3390/ijerph121215046.
  16. Ho H. C., Knudby A., Xu Y., Hodul M., Aminipouri M., A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area, Science of the Total Environment, 2016, Vol. 544, pp. 929–938, http://dx.doi.org/10.1016/j.scitotenv.2015.12.021.
  17. Ho H. C., Knudby A., Walker B. B., Henderson S. B., Delineation of Spatial Variability in the Temperature-Mortality Relationship on Extremely Hot Days in Greater Vancouver, Canada, Environmental Health Perspectives, 2017, Vol. 125, No. 1, pp. 66–75, DOI: 10.1289/EHP224.
  18. Kritsuk S. G., Gornyy V. I., Davidan T. A., Latypov I. Sh., Manvelova A. V., Konstantinov P. I., Tronin A., Varentsov M. I., Vasiliev M., Satellite mapping of air temperature under polar night conditions, Geo-Spatial Information Science, 2022, pp. 325–336, DOI: 10.1080/10095020.2021.2003166.
  19. Oke T. R., Johnson G. T., Steyn D. G., Watson I. D., Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation, Boundary-Layer Meteorology, 1991, Vol. 56, pp. 339–358, doi.org/10.1007/BF00119211.
  20. Price J. C., Assessment of the Urban Heat Island Effect Through the Use of Satellite Data, Monthly Weather Review, 1979, Vol. 107, pp. 1554–1557, http://dx.doi.org/10.1175/1520-0493(1979)107<1554:AOTUHI>2.0.CO;2.
  21. Ruuhela R., Jylhä K., Lanki T., Tiittanen P., Matzarakis A., Biometeorological Assessment of Mortality Related to Extreme Temperatures in Helsinki Region, Finland, 1972–2014, Intern. J. Environmental Research and Public Health, 2017, Vol. 14, Art. No. 944, 19 p., DOI: 10.3390/ijerph14080944.
  22. Ruuhela R., Votsis A., Kukkonen J., Jylhä K., Kankaanpää S., Perrels A., Temperature-Related Mortality in Helsinki Compared to Its Surrounding Region Over Two Decades, with Special Emphasis on Intensive Heatwaves, Atmosphere, 2021, Vol. 12, Art. No. 46, 13 p., https://doi.org/10.3390/atmos12010046.
  23. Srivanit M., Hokao K., Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: An Application for the City of Bangkok, Thailand, J. Architectural and Planning Research and Studies, 2012, No. 9, pp. 83–100, available at: https://www.researchgate.net/publication/286134867_.
  24. Yu X., Guo X., Wu Zh., Land Surface Temperature Retrieval from Landsat 8 TIRS — Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method, Remote Sensing, 2014, Vol. 6, pp. 9829–9852, DOI: 10.3390/rs6109829.