ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 259-269

Development of a polymodel assessment complex of the content of biogenic suspensions in water using multispectral satellite imagery

O.V. Grigorieva 1 , D.V. Zhukov 1 , A.V. Markov 1 
1 A.F. Mozhaisky Military Space Academy, Saint Petersburg, Russia
Accepted: 22.04.2022
DOI: 10.21046/2070-7401-2022-19-3-259-269
The paper considers the solution of the problem of estimating the content of biogenic suspensions in water bodies using artificial neural networks in the processing of multispectral optical-electronic space survey data. An original polymodel complex is proposed that allows determining the presence and intensity of impurities in water from the values of signals recorded in reasonably selected spectral channels of the survey equipment. The main feature of the complex is the use of a semi-analytical model of light flux transfer in an aqueous medium for training a neural network, which can be adaptively adjusted according to field measurements or empirical regression dependencies that establish a relationship between the spectral brightness characteristics of the water surface and the concentration of chlorophyll a. The combined use of semi-analytical and regression models ensures the classification of multispectral images of water bodies under conditions of a priori uncertainty (in the absence of training samples) with the simultaneous possibility of refining the results obtained from the available independent experimental data.
Keywords: biogenic suspensions, phytoplankton, multispectral data, regression and semi-analytical models, brightness of the water surface, artificial neural network
Full text

References:

  1. Adamenko V. N., Kondrat’ev K. Ya., Pozdnyakov D. V., Chekhin L. V., Radiatsionnyi rezhim i opticheskie svoistva ozer (Radiation regime and optical properties of lakes), Leningrad: Gidrometeoizdat, 1991, 300 p. (in Russian).
  2. Burenkov V. I., Vasilkov A. P., Shifrin K. S., Optika okeana. Fizicheskaya optika okeana (Ocean optics. Physical optics of the ocean), Vol. 1, Moscow: Nauka, 1983, 371 p. (in Russian).
  3. Vershinin A. O., Orlova T. Yu., Toxic and harmful algae in the coastal waters of Russia, Oceanology, 2008, Vol. 48, No. 4, pp. 524–537.
  4. GOST 17.1.4.02-90. Voda. Metodika spektrofotometricheskogo opredeleniya khlorofilla (GOST 17.1.4.02-90. Water. Method of spectrophotometric determination of chlorophyll), USSR standard, 1991, 15 p. (in Russian).
  5. Grigoreva O. V., Zukov D. V., Markov A. V., Mochalov V. F. (2016a), The Assessment of the Coastal Water Depths Using of Multi- and Hyperspectral Remote Sensing Imagery, Optika atmosfery i okeana, 2016, Vol. 29, No. 7, pp. 553–559, DOI: 10.15372/AOO20160704 (in Russian).
  6. Grigor’eva O. V., Zukov D. V., Markov A. V., Mochalov V. F., Nikolenko A. N. (2016b), The possibilities of using multi- and hyperspectral equipment in the visible and near infrared spectral ranges for classification of the shallow part of the seas, Trudy Voenno-kosmicheskoi akademii imeni A. F. Mozhajskogo, 2016, Vol. 653, pp. 111–116 (in Russian).
  7. Grinin A. S., Orekhov N. A., Novikov V. N., Matematicheskoe modelirovanie v ekologii (Mathematical modeling in ecology), Moscow: YuNITI-DATA, 2003, 269 p. (in Russian).
  8. Dzhulai A. A., Seasonal dynamics of chlorophyll “a” concentration and light absorption by phytoplankton pigments in the coastal waters of Sevastopol (2009–2010), Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon i kompleksnoe ispol’zovanie resursov shel’fa, 2011, No. 25-2, pp. 357–369 (in Russian).
  9. Kopelevich O. V., Lyutsarev S. V., Rodionov V. V., Light spectral absorption by yellow substance of ocean water, Okeanologiya, 1989, Vol. 29, No. 3, pp. 409–414 (in Russian).
  10. Kopelevich O. V., Burenkov V. I., Sheberstov S. V., Development and use of regional algorithms for calculating bio-optical characteristics of the seas of Russia according to satellite color scanners, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Vol. 3, No. 2, pp. 99–105 (in Russian).
  11. Kopelevich O. V., Sahling I. V., Vazyulya S. V., Glukhovets D. I., Sheberstov S. V., Burenkov V. I., Karalli P. G., Yushmanova A. V., Bioopticheskie kharakteristiki morei, omyvayushchikh berega zapadnoi poloviny Rossii, po dannym sputnikovykh skanerov tsveta 1998–2017 gg. (Bio-optical characteristics of the seas, surrounding the western part of Russia, from data of the satellite ocean color scanners of 1998–2017), Moscow: OOO “VASh FORMAT”, 2018, 140 p. (in Russian).
  12. Levin I. M., Few-parameter optical models of seawater inherent optical properties, Fundamentalnaya i prikladnaya gidrofizika, 2014, Vol. 7, No. 3, pp. 3–22 (in Russian).
  13. Mankovskii V. I., Osnovy optiki okeana (Fundamentals of Ocean Optics), Sevastopol’, 1996, 119 p. (in Russian).
  14. Stelmakh L. V., Mansurova I. M., Long-term dynamics of phytoplankton and chlorophyll a concentration in the surface layer of the coastal waters of the Black Sea (Sevastopol region), Voprosy sovremennoi al’gologii, 2020, No. 1(22), pp. 66–81 (in Russian), DOI: 2311-0147-2020-1(22)-66-81.
  15. Suslin V. V., Churilova T. Ya., Sosik Kh. M., The SeaWiFS algorithm of chlorophyll a in the Black Sea, Morskoi ekologicheskii zhurnal, 2008, No. 2, Vol. 7, pp. 24–42 (in Russian).
  16. Fefilov Yu. V., Razrabotka i sozdanie informatsionnoi tekhnologii distantsionnogo opredeleniya parametrov pervichnoi produktivnosti v sistemakh monitoringa okeana: Avtoref. diss. kand. tekhn. nauk (Development and creation of information technology for remote determination of parameters of primary produktivnost v sistemah monitoringa okeana, Ext. abstract Cand. techn. sci. thesis), Moscow: Moskovskii gosudarstvennyi institut elektroniki i matematiki, 2003, 17 p. (in Russian).
  17. Haykin S., Neural networks: a comprehensive foundation, Upper Saddle River, New Jersey: Prentice Hall, 1999, 842 p.
  18. Bricaud A., Morel A., Prieur L., Absorption by dissolved organic matter of the sea yellow substance in the UV and visible domains, Limnology and Oceanography, 1981, Vol. 26, pp. 43–53, DOI: 10.4319/lo.1981.26.1.0043.
  19. Bricaud A., Babin M., Morel A., Claustre H., Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization, J. Geophysical Research: Atmospheres, 1995, Vol. 100, No. C7, pp. 13321–13332, DOI: 10.1029/95JC00463.
  20. Carder K. L., Chen F. R., Lee Z. P., Hawes S. K., Kamykowski D., Semi-analytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures, J. Geophysical Research: Atmospheres, 1999, Vol. 104, pp. 5403–5422, DOI: 10.1029/1998JC900082.
  21. Heege T., Fischer J., Mapping of water constituents in Lake Constance using multispectral airborne scanner data and a physically based processing scheme, Canadian J. Remote Sensing, 2004, Vol. 30(1), pp. 77–86, DOI: 10.5589/m03-056.
  22. Kiselev V., Bulgarelli B., Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation, J. Quantitative Spectroscopy and Radiative Transfer, 2004, Vol. 8, pp. 419–435, DOI: 10.1016/S0022-4073(03)00236-X.
  23. Lee Z., Carder K. L., Hawes S. K., Steward R. G., Peacock T. G., Davis C. O., A model for interpretation of hyperspectral remote-sensing reflectance, Applied Optics, 1994, Vol. 33, pp. 5721–5732, DOI: 10.1364/AO.33.005721.
  24. Lee Z., Carder K. L., Mobley C. D., Steward R. G., Patch J. S., Hyperspectral remote sensing for shallow waters I. A semianalytical model, Applied Optics, 1998, Vol. 37, pp. 6329–6338, DOI: 10.1364/AO.37.006329.
  25. Morel A., Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), J. Geophysical Research, 1988, Vol. 93, No. C9, pp. 10749–10768, DOI: 10.1029/JC093IC09P10749.