ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 142-154

Seasonal changes in temperature in the trunks of a living tree (by the example of pine)

D.A. Romanov 1 , I.V. Ryabinin 2 , A.N. Romanov 2 
1 Novosibirsk State University, Novosibirsk, Russia
2 Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
Accepted: 22.04.2022
DOI: 10.21046/2070-7401-2022-19-2-142-154
Trees are persistently exposed to various natural effects. Physiological characteristics of a tree significantly depend on its temperature. In different branches of science and technology, measuring the tree temperature is relevant and in demand. This paper presents the results of seasonal and daily temperature changes (October-April) in a trunk of a pine (Pínus) tree. To measure the temperature, TMP1075 sensors were used. Data collection from temperature sensors was carried out by means of a base station controlled by the STM32L431 microcontroller. The measurement results were recorded on a flash card and sent via an SX1278 transceiver to a receiving station with a similar unit and access to the global network. The database was organized on the receiving side. Sampling of temperature sensors was performed at one- minute intervals. We studied diurnal temperature variations on the tree surface and in its trunk in winter and spring. Radial temperature dependences in the tree trunk were approximated by a quadric polynomial. They depended on the ambient temperature and differed significantly. The temperature difference between the surface and deep layers of the tree trunk reached 12 °C. The obtained results indicate that the measured ambient temperatures can be used in calculations of temperatures in a tree trunk at different depths.
Keywords: tree, trunk, temperature, seasonal dynamics, daily dynamics
Full text

References:

  1. Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E. A., Satellite-based assessment of Russian forest fire mortality, Lesovedenie, 2015, No. 2, pp. 83–94 (in Russian).
  2. Benkova A. V., Influence of Weather Factors on the Increment of Dominant and Suppressive Trees of Abies sibirica Ledeb. and Picea obovata Ledeb. in the Middle Reaches of the Yenisei River, Sibirskii ekologicheskii zhurnal, 2005, Vol. 12, No. 1, pp. 45–49 (in Russian).
  3. Berri B. L., Liberman A. A., Shiyatov S. G., The reconstruction and forecast of temperatures in the northern hemisphere according to fluctuations in the growth indices of trees on the polar tree limit, Vestnik Moskovskogo gosudarstvennogo universiteta, Ser. 5: Geografiya, 1983, No. 4, pp. 41–47 (in Russian).
  4. Bunina Yu. E., Ponomarev S. A., Chapurskii L. I., Empirical model of the daily change of radiation temperatures of vegetation cover during the summer period, Problemy voenno-prikladnoi geofiziki i kontrolya sostoyaniya prirodnoi sredy: materialy VI Vserossiiskoi nauchnoi konferentsii (Problems of military-applied geophysics and control of the state of the natural environment, Proc. 6th All-Russia Scientific Conf.), Saint Petersburg, 16–18 Sept. 2020, Saint Petersburg, 2020, pp. 175–179 (in Russian).
  5. Dancheva A. V., Zalesov S. V., Mukanov B. M., Influence of climatic factors on radial growth of trees in pine forests of Kazakh upland, Mezhdunarodnyi nauchno-issledovatel’skii zhurnal, 2020, No. 3-1(93), pp. 68–76 (in Russian), DOI: https://doi.org/10.23670/IRJ.2020.93.3.010.
  6. Dolgova E. A., Solomina O. N., Matskovsky V. V., Dobryansky A. S., Semenyak N. A., Shpunt S. S., Spatial Variation of Pine Tree-Ring Growth in the Solovetsky Islands, Izvestiya Rossiiskoi Akademii Nauk. Ser. geograficheskaya, 2019, No. 2, pp. 41–50 (In Russian), https://doi.org/10.31857/S2587-55662019241-50.
  7. Evsikova N. Yu., Lisitsyn V. I., Terekhina I. V., Stochastic analysis of temperature fluctuations in forests, Aktual’nye napravleniya nauchnykh issledovanii XXI veka: teoriya i praktika, 2020, Vol. 8, No. 1(48), pp. 48–52 (in Russian), DOI: 10.34220/2308-8877-2020-8-1-48-52. DOI: 10.34220/2308-8877-2020-8-1-48-52.
  8. Zhuravleva I. V., Tishin D. V., Chizhikova N. A., Iskandirov P. Yu., Xylogenesis of scots pine (Pinus Sylvestris L.) in the conditions of the middle Volga region, Khvoinye boreal’noi zony, 2020, Vol. 38, No. 1-2, pp. 28–33 (in Russian).
  9. Ivanov V. P., Marchenko S. I., Nartov D. I., Balukhta L. P., Radial Growth of Scots Pine (Pinus sylvestris L.) under Inhibition, Izvestiya vysshikh uchebnykh zavedenii. Lesnoi zhurnal, 2021, No. 1(379), pp. 69–81 (in Russian), DOI: 10.37482/0536-1036-2021-1-69-81.
  10. Kalinkevich A. A., Krylova M. S., Kakovkina A. Yu., Slyusarev V. I., Investigation of seasonal dynamics of water regime of pine trees for interpretation of radar survey results, Lesovedenie, 2011, No. 4, pp. 39–47 (in Russian).
  11. Kamalova N. S., Lisitsyn V. I., Evsikova N. Yu., Lemeshko A. Yu., Kuznetsov A. V., Assessment of ecological safety of forest areas using digital technologies, Aktual’nye napravleniya nauchnykh issledovanii XXI veka: teoriya i praktika, 2015, Vol. 3, No. 2-2(13-2), pp. 132–136 (in Russian), DOI: 10.12737/4340.
  12. Kamalova N. S., Evsikova N. Yu., Kamalov N. R., Investigation of changes of average daily temperature during a year and their impact on physico-chemical processes in tree trunks, Aktual’nye napravleniya nauchnykh issledovanii XXI veka: teoriya i praktika, 2018, Vol. 6, No. 3(39), pp. 92–96 (in Russian).
  13. Karasev V. N., Karaseva M. A., Romanov E. M., Mukhortov D. I., Rapid thermal method for early diagnosis of the physiological state of scots pine trees, Russian J. Ecology, 2017, Vol. 48, No. 2, pp. 109–115, DOI: 10.7868/S036705971702007X.
  14. Karasev V. N., Karaseva M. A., Mukhortov D. I., Coniferous trees bioelectric and temperature diagnostics, Lesovedenie, 2020, No. 2, pp. 162–174 (in Russian), DOI: 10.31857/S0024114820010088.
  15. Kilyusheva N. V., Ovsyannikova N. V., Temperature of Scots pine trunks, Nauchnye itogi goda: dostizheniya, proekty, gipotezy, 2013, No. 3, pp. 101–104 (in Russian).
  16. Kishchenko I. T., The effect of climatic factors on the seasonal development of coniferous forest-forming species in the taiga zone (Karelia), Izvestiya vysshikh uchebnykh zavedenii. Lesnoi zhurnal, 2020, No. 3(375), pp. 72–82 (in Russian), DOI: 10.37482/0536-1036-2020-3-72-82.
  17. Kuzmichev A. M., Ovcharenko A. A., Assessment of woody plantings drought resistance at middle Prikhoperye, Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2012, Vol. 14, No. 1–8, pp. 1971–1974 (in Russian).
  18. Kukhta A. E., Rumyantsev D. E., Puchinskaya D. V., Influence of Climatic Factors on the Radial and Linear Growth of Scotch Pine in the Conditions of the Kivach Nature Reserve, Vestnik Moskovskogo gosudarstvennogo universiteta lesa — Lesnoi vestnik, 2014, Vol. 18, No. 5, pp. 88–91 (in Russian).
  19. Levin S. V., Studies of the peculiarities of the formation of temperature and humidity of tree trunks of scots pine in the contact method of study, Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2021, No. 91, pp. 187–192 (in Russian), DOI: 10.21515/1999-1703-91-187-192.
  20. Loupian E. A., Balashov I. V., Bartalev S. A., Burtsev M. A., Dmitriev V. V., Senko K. S., Krasheninnikova Yu. S., Forest fires in Russia: specifics of the 2019 fire season, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 356–363 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-356-363.
  21. Magda B. N., Vaganov E. A., Climate response on the mountain forest-steppe in Altay-Sayany region, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2006, No. 5, pp. 92–100 (in Russian).
  22. Marchenko A. A., Ivanov A. V., Impact of weather variation on phenological development of woody plants in Ussuriysk, Problemy regional’noi ekologii, 2021, No. 2, pp. 5–9 (in Russian), DOI: 10.24412/1728-323X-2021-2-5-9.
  23. Matveev N. N., Kamalova N. S., Evsikova N. Yu., Lisitsyn V. I., Monitoring of the temperature distribution in prediction of forest fires, Lesotekhnicheskii zhurnal, 2015, Vol. 5, No. 4(20), pp. 16–25 (in Russian), DOI: 10.12737/17398.
  24. Matveev N. N., Evsikova N. Yu., Kamalov N. R., Fire safety control by forest massive diagnosis with digital technology, Aktual’nye napravleniya nauchnykh issledovanii XXI veka: teoriya i praktika, 2017, Vol. 5, No. 1(27), pp. 226–229 (in Russian).
  25. Meshkova V. L., Zinchenko O. V., Skrylnik Yu. E., Aristova A. I., Timeline (or timeframe) of development of pine stem pests in the left-bank Ukraine, Izvestiya Sankt-Peterburgskoi lesotekhnicheskoi akademii, 2015, No. 211, pp. 59–75 (in Russian).
  26. Nikolaeva S. A., Savchuk D. A., Climatogenetic response of pine trees in southern Tomsk oblast, Zhurnal Sibirskogo federal’nogo universiteta. Ser.: Biologiya, 2008, Vol. 1, No. 4, pp. 400–413 (in Russian).
  27. Ovsyannikova N. V., Feklistov P. A., Volkova N. V., Melekhov V. I., Tarakanov A. M., Merzlenko M. D., The temperature of spruce trunks, Izvestiya vysshikh uchebnykh zavedenii. Lesnoi zhurnal, 2013, No. 1(331), pp. 38–42 (in Russian).
  28. Oidupaa O. Ch., Vaganov E. A., Naurzbaev M. M., Prolonged changes in summer temperature and radial increment of larch trees at the upper timberline in the Altai-Sayan mountains, Lesovedenie, 2004, No. 6, pp. 14–24 (in Russian).
  29. Pinaevskaya E. A., The influence of climatic parameters on the formation of radial growth of the pine on the north border of the area of European north of Russia, Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta, 2018, No. 2(137), pp. 208–214 (in Russian).
  30. Pinaevskaya E. A., Pakhov A. S., Guseva A. S., Gapich E. S., Variability of growth and “climate-reaction” of scots pine in the subarctic territory, Arkticheskie issledovaniya: ot ekstensivnogo osvoeniya k kompleksnomu razvitiyu: Materialy II mezhdunarodnoi nauchno-prakticheskoi konferentsii (Arctic research: from extensive development to integrated development, Proc. II Intern. Scientific and Practical Conf.), Arkhangelsk, 11–14 Nov., 2020, Arkhangelsk, 2020, pp. 403–407 (in Russian).
  31. Sannikov S. P., Pobedinsky V. V., Borodulin I. V., Pobedinsky A. A., The method of the timber stock radio-frequency monitoring, Lesnoi vestnik. Forestry Bull., 2017, Vol. 21, No. 2, pp. 45–54 (in Russian), DOI: 10.18698/2542-1468-2017-2-45-54.
  32. Skuratov I. V., Kryukova E. A., High temperatures influence on woody plants condition and their pathogens in protective stands of lower Volga region, Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Les. Ekologiya. Prirodopol’zovanie, 2015, No. 2(26), pp. 37–43 (in Russian).
  33. Tarasov S. I., Modeling of thermal exchange in wood plants: initial and boundary conditions, xylem transport, Uspekhi sovremennoi biologii, 2010, Vol. 130, No. 1, pp. 38–49 (in Russian).
  34. Tarasov S. I., Modelling of a heat exchange of wood plants: geometry and internal sources of heat, Vestnik instituta biologii Komi nauchnogo tsentra Ural’skogo otdeleniya RAN, 2011, No. 9, pp. 24–28 (in Russian).
  35. Tikhova G. P., Pridacha V. B., Sazonova T. A., The influence of air temperature and relative humidity on dynamics of water potential in Betula pendula (betulaceae) trees, Sibirskii lesnoi zhurnal, 2017, No. 1, pp. 56–64 (in Russian), DOI: 10.15372/SJFS20170106.
  36. Tikhonova N. A., Tikhonova I. V., Aniskina A. A., Loskutov S. R., Semenyakin D. A., The results of comparison of low-temperature exotherms and endotherm during freezing and melting water in the tissues of 2-year-old needles in some species of coniferous trees, Khvoinye boreal’noi zony, 2017, Vol. 35, No. 3–4, pp. 53–60 (in Russian).
  37. Tishin D. V., Chizhikova N. A., Chugunov R. G., High-moor bog pine (Pinus sylvestris L.) radial growth as an indicator of local climate changesr, Vestnik Moskovskogo gosudarstvennogo universiteta lesa — Lesnoi vestnik, 2014, Vol. 18, No. 5, pp. 177–182 (in Russian).
  38. Tyukavina O. N., Temperature regime of a scots pine in a climate of Arkhangelsk, Vestnik Severnogo (Arkticheskogo) federal’nogo universiteta. Ser.: Estestvennye nauki, 2015, No. 2, pp. 73–79 (in Russian).
  39. Usoltsev V. A., Tsepordey I. S., Predicting stem biomass of pine trees in natural and planted forests due to climate change, Sibirskii lesnoi zhurnal, 2021, No. 2, pp. 72–81 (in Russian), DOI: 10.15372/SJFS20210207.
  40. Tselniker Yu. L., An influence of temperature on the frondescence data and leaf growth rate of deciduous trees, Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem, 1996, Vol. 16, pp. 164–176 (in Russian).
  41. Bian Z., Cao B., Li H., Du Y., Xiao Q., Liu Q., The effect of trunks on directional brightness temperatures of a leafless forest using a geometrical optical model, Proc. IGARSS’2018, 2018, pp. 3947–3950, DOI: 10.1109/IGARSS.2018.8517583.
  42. Majdák A., Jakuš R., Blaženec M., Determination of differences in temperature regimes on healthy and bark-beetle colonized spruce trees using a handheld thermal camera, iForest — Biogeosciences and Forestry, 2021, Vol. 14, No. 3, pp. 203–211, https://doi.org/10.3832/ifor3531-014.
  43. Pitarma R., Crisostomo J., Ferreira M. E., Contribution to Trees Health Assessment Using Infrared Thermography, Agriculture, 2019, Vol. 9(8), Art. No. 171, 14 p., https://doi.org/10.3390/agriculture9080171.
  44. Prokopyev V. Yu., Bakanov S. S., Bodrov V. K., Chernodarov E. N., Doroshkin A. A., Gorev V. N., Kolesnikova A. Yu., Kozlov A. S., Kus O. N., Melkov A. V., Mitrokhin A. A., Morsin A. A., Nazarenko A. E., Neskorodev I. V., Pelemeshko A. V., Prokopyev Yu. M., Romanov D. A., Shilov A. M., Shirokih M. V., Sidorchuk A. A., Styuf A. S., Zadorozhny A. M., NORBY CubeSat nanosatellite: design challenges and the first flight data, J. Physics: Conf. Ser., 2021, Vol. 1867, Art. No. 012038, 11 p., http://doi:10.1088/1742-6596/1867/1/012038.
  45. Tuominen J., Lipping T., Kuosmanen V., Haapanen R., Remote Sensing of Forest Health, Geoscience and Remote Sensing, Pei-Gee P. H. (ed.), 2009, 25 p., DOI: 10.5772/8283.
  46. Vidal D., Pitarma R., Infrared thermography applied to tree health assessment: A review, Agriculture, 2019, Vol. 9, Art. No, 156, 15 p., https://doi.org/10.3390/agriculture9070156.
  47. Webster C., Rutter N., Zahner F., Jonas T., Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures, J. Geophysical Research: Atmospheres, 2016, Vol. 121, No. 3, pp. 1220–1235, https://doi.org/10.1002/2015JD024099.
  48. Yue X., Wang L., Shi X., Xu M., Zhu Z., Investigations on the Effects of Seasonal Temperature Changes on the Electrical Resistance of Living Trees, Forests, 2018, Vol. 9(9), Art. No. 550, 15 p., https://doi.org/10.3390/f9090550.