ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 201-211

Characteristics of short-period internal waves in the Southern Ocean inferred from Sentinel 1A/B SAR satellite data

Ya.I. Bakueva 1 , I.E. Kozlov 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 18.04.2022
DOI: 10.21046/2070-7401-2022-19-2-201-211
This paper presents the results of observations of short-period internal waves (SIWs) over ice-free areas of the Southern Ocean. The study was conducted in the Indian and Atlantic sectors, namely in the Drake Passage and the Scotia, Weddell, Riser-Larsen, Lazarev, Cosmonauts, and Commonwealth Seas using Sentinel 1A/B satellite data for February 2020. Form the analysis of surface manifestations of SIWs in SAR images we determined by the areas of their generation and space-time characteristics, such as crest length of the leading wave and packet width. In total, 1037 radar images were analyzed and 6888 surface manifestations of SIWs were identified. Key areas of SIWs activity defined by their maximum probability were recorded in the Drake Passage, above the continental slope to the northeast of the Antarctic Peninsula in the Scotia Sea, and also above the shelf slope in the Commonwealth Sea. Internal waves were observed as packets of 4–5 solitary waves with a leading wave crest length of about 15–30 km, an average packet width of about 15 km (most values are within 10–25 km), and a characteristic decrease in the distance between them towards the rear of the packet; single solitons were rarely recorded.
Keywords: short-period internal waves, satellite radar sea surface, Southern Ocean, Drake Passage, Scotch Sea, Weddell Sea, Lazarev Sea, Riiser-Larsen Sea, Commonwealth Sea, Cosmonauts Sea
Full text

References:

  1. Bondur V. G., Morozov E. G., Bel’chansky G. I., Grebenyuk Yu. V., Radar imaging and numerical simulation of internal tidal waves nearby U. S. North-Eastern Coast, Issledovanie Zemli iz kosmosa, 2006, No. 2, pp. 51–63 (in Russian).
  2. Dulov V. A., Yurovskaya M. V., Kozlov I. E., Coastal Zone of Sevastopol on High Resolution Satellite Images, Physical Oceanography, 2015, No. 6, pp. 39–54, DOI: 10.22449/1573-160X-2015-6-39-54.
  3. Kozlov I. E., Mikhaylichenko T. V., Estimation of internal wave phase speed in the Arctic Ocean from sequential spaceborne SAR observations, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 181–192 (in Rusian), DOI: 10.21046/2070-7401-2021-18-5-181-192.
  4. Konyaev K. V., Sabinin K. D., Volny vnutri okeana (Waves inside the ocean), Saint Petersburg: Gidrometeoizdat, 1992, 272 p. (in Russian).
  5. Apel J. R., Holbrook J. R., Liu A. K., Tsai J. J., The Sulu Sea internal soliton experiment, J. Physical Oceanography, 1985, Vol. 15, No. 12, pp. 1625–1651, https://doi.org/10.1175/1520-0485(1985)015<1625:TSSISE>2.0.CO;2.
  6. Beckmann A., Pereira A. F., Lateral tidal mixing in the Antarctic marginal seas, Ocean Dynamics, 2003, Vol. 53, No. 1, pp. 21–26, DOI: 10.1007/s10236-002-0020-9.
  7. Chiu C. S., Ramp S. R., Miller C. W., Lynch J. F., Duda T. F., Tang T. Y., Acoustic intensity fluctuations induced by South China Sea internal tides and solitons, IEEE J. Oceanic Engineering, 2004, Vol. 29, No. 4, pp. 1249–1263, DOI: 10.1109/JOE.2004.834173.
  8. da Silva J. C. B., Ermakov S. A., Robinson I. S., Jeans D. R. G., Kijashko S. V., Role of surface films in ERS SAR signatures of internal waves on the shelf: 1. Hort‐period internal waves, J. Geophysical Research: Oceans, 1998, Vol. 103, No. C4, pp. 8009–8031, DOI: 10.1029/97JC02725.
  9. Fan K., Fu B., Gu Y., Yu X., Liu T., Shi A., Xu K., Gan X., Internal wave parameters retrieval from space-borne SAR image, Frontiers of Earth Science, 2015, Vol. 9, No. 4, pp. 700–708, DOI: 10.1007/s11707-015-0506-7.
  10. Fer I., Koenig Z., Kozlov I. E., Ostrowski M., Rippeth T. P., Padman L., Bosse A., Kolas E., Tidally forced lee waves drive turbulent mixing along the Arctic Ocean margins, Geophysical Research Letters, 2020, Vol. 47, No. 16, e2020GL088083, https://doi.org/10.1029/2020GL088083.
  11. Foldvik A., Middleton J. H., Foster T. D., The tides of the southern Weddell Sea, Deep Sea Research Part A: Oceanographic Research Papers, 1990, Vol. 37, No. 8, pp. 1345–1362, DOI: 10.1016/0198-0149(90)90047-Y.
  12. Garabato A. C. N., Polzin K., King B., Heywood K., Visbeck M., Widespread intense turbulent mixing in the Southern Ocean, Science, 2004, Vol. 303, No. 5655, pp. 210–213, DOI: 10.1126/science.1090929.
  13. Garabato A. C. N., Nurser A. J. G., Scott R. B., Scott R. B., Goff J. A., The impact of small-scale topography on the dynamical balance of the ocean, J. Physical Oceanography, 2013, Vol. 43, No. 3, pp. 647–668, https://doi.org/10.1175/JPO-D-12-056.1.
  14. Han S. C., Ray R. D., Luthcke S. B., Ocean tidal solutions in Antarctica from GRACE inter-satellite tracking data, Geophysical Research Letters, 2007, Vol. 34, No. 21, DOI: 10.1029/2007GL031540.
  15. Horne E., Beckebanze F., Micard D., Odier P., Maas L. R. M., Joubaud S., Particle transport induced by internal wave beam streaming in lateral boundary layers, J. Fluid Mechanics, 2019, Vol. 870, pp. 848–869, DOI: 10.1017/jfm.2019.251.
  16. Jackson C. R., da Silva J. C. B., Jeans G., Alpers W., Caruso M. J., Nonlinear internal waves in synthetic aperture radar imagery, Oceanography, 2013, Vol. 26, No. 2, pp. 68–79, https://doi.org/10.5670/oceanog.2013.32.
  17. Kozlov I., Kudryavtsev V., Zubkova E. V., Zimin A. V., Chapron B., Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 9, pp. 1073–1087, DOI: 10.1134/S0001433815090121.
  18. Kozlov I. E., Zubkova E. V., Kudryavtsev V. N., Internal solitary waves in the Laptev Sea: first results of spaceborne SAR observations, IEEE Geoscience and Remote Sensing Letters, 2017, Vol. 14, No. 11, pp. 2047–2051, DOI: 10.1109/LGRS.2017.2749681.
  19. Kozlov I. E., Plotnikov E. V., Manucharyan G. E., Brief Communication: Mesoscale and submesoscale dynamics in the marginal ice zone from sequential synthetic aperture radar observations, The Cryosphere, 2020, Vol. 14, No. 9, pp. 2941–2947, https://doi.org/10.5194/tc-14-2941-2020.
  20. Kudryavtsev V., Kozlov I., Chapron B., Johannessen J. A., Quad‐polarization SAR features of ocean currents, J. Geophysical Research: Oceans, 2014, Vol. 119, No. 9, pp. 6046–6065, https://doi.org/10.1002/2014JC010173.
  21. Kunze E., Firing E., Hummon J. M., Chereskin T. K., Thurnherr A. M., Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles, J. Physical Oceanography, 2006, Vol. 36, No. 8, pp. 1553–1576, https://doi.org/10.1175/JPO2926.1.
  22. Marchenko A. V., Morozov E. G., Kozlov I. E., Frey D. I., High-amplitude internal waves southeast of Spitsbergen, Continental Shelf Research, 2021, Vol. 227, Art. No. 104523, DOI: 10.1016/j.csr.2021.104523.
  23. Moum J. N., Farmer D. M., Smyth W. D., Armi L., Vagle S., Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf, J. Physical Oceanography, 2003, Vol. 33, No. 10, pp. 2093–2112, https://doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2.
  24. Nikurashin M., Ferrari R., Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean, J. Physical Oceanography, 2010, Vol. 40, No. 5, pp. 2025–2042, https://doi.org/10.1175/2010JPO4315.1.
  25. Osborne A. R., Burch T. L., Scarlet R. I., The influence of internal waves on deep-water drilling, J. Petroleum Technology, 1978, Vol. 30, No. 10, Paper No. SPE-6913-PA, pp. 1497–1504, https://doi.org/10.2118/6913-PA.
  26. Padman L., Erofeeva S. Y., Fricker H. A., Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves, Geophysical Research Letters, 2008, Vol. 35, No. 22, DOI: 10.1029/2008GL035592.
  27. Ray R. D., A preliminary tidal analysis of ICESat laser altimetry: Southern Ross Ice Shelf, Geophysical Research Letters, 2008, Vol. 35, No. 2, https://doi.org/10.1029/2007GL032125.
  28. Richter O., Gwyther D. E., King M. A., Galton-Fenzi B. K., Tidal modulation of Antarctic ice shelf melting, The Cryosphere Discussions, 2020, pp. 1–32, https://doi.org/10.5194/tc-2020-16.
  29. Scott R. B., Goff J. A., Garabato A. C. N., Nurser A. J. G., Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography, J. Geophysical Research: Oceans, 2011, Vol. 116, No. C9, DOI: 10.1029/2011JC007005.
  30. Sloyan B. M., Spatial variability of mixing in the Southern Ocean, Geophysical Research Letters, 2005, Vol. 32, No. 18, https://doi.org/10.1029/2005GL023568.
  31. Woodson C. B., The fate and impact of internal waves in nearshore ecosystems, Annual Review of Marine Science, 2018, Vol. 10, pp. 421–441, https://doi.org/10.1146/annurev-marine-121916-063619.
  32. Wu L., Jing Z., Riser S., Visbeck M., Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats, Nature Geoscience, 2011, Vol. 4, No. 6, pp. 363–366, DOI: 10.1038/ngeo1156.