ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 93-105

Satellite observations of reed fire smoke on the Lower Volga

S.S. Shinkarenko 1, 2 , S.А. Bartalev 1 , A.N. Berdengalieva 2 
1 Space Research Institute RAS, Moscow, Russia
2 Federal Scientific Center of Agroecology, Complex Meliorations and Agroforestry RAS , Volgograd, Russia
Accepted: 15.02.2022
DOI: 10.21046/2070-7401-2022-19-2-93-105
The article analyzes the conditions of burning wetlands in the Volga Delta and establishes the prerequisites for a record smoke from reed fires in October 2021. A fire in the eastern part of the delta in the Atyrau Region of Kazakhstan caused a smoke plume about 700 km long, recorded by a weather station In Volgograd. MODIS and TROPOMI data made it possible to identify atmospheric smoke and establish the location of the fire in the vicinity of the village of Kurmangazy (Ganyushkino) in the Atyrau Region. Previously, fires with extended smoke plumes were observed only in 2015 and 2019, characterized by low flood levels and average annual water discharges. The most intense burning was observed on the front edge of the Volga Delta and in its eastern part during low water levels with moderate wind speeds up to 5–6 m/s. The burning intensity in the Volga Delta is associated with hydrological conditions especially pronounced in the summer-autumn period. The correlation coefficient of the Fire Radiative Power (FRP) normalized to the pixel area was –0.88 for the total FRP for the year and –0.77 for the average FRP per fire. The trends of hydrological changes in recent decades in the Volga Delta are characterized by a decrease in water levels due to a drop in the level of the Caspian Sea, which allows us to expect an intensification of reed fires here.
Keywords: Lower Volga, reed fire, remote sensing, MODIS, FRP
Full text


  1. Barmin A. N., Golub V. B., Instructive lesson of results of reed thickets operation in the Volga river delta, Izvestiya Samarskogo nauchnogo tsentra RAN, 2000, Vol. 2, No. 2, pp. 295–299 (in Russian).
  2. Bartalev S. A., Ershov D. V., Loupian E. A., Tolpin V. A., Possibilities of satellite service VEGA using for different tasks of land ecosystems monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 49–56 (in Russian).
  3. Bartalev S. A., Stytsenko F. V., Khvostikov S. A., Loupian E. A., Methodology of post-fire tree mortality monitoring and prediction using remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 176–193 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-176-193.
  4. Shinkarenko S. S., Berdengalieva A. N., Non-Forest Fires in River Floodplains Identification, Nauchno-agronomicheskii zhurnal, 2020, No. 4, pp. 43–48 (in Russian), DOI: 10.34736/FNC.2020.
  5. Bondur V. G., Satellite Monitoring of Wildfires during the anomalous heat wave of 2010 in russia, Izvestiya. Atmospheric and Oceanic Physics, 2011, Vol. 47, No. 9, pp. 1039–1048.
  6. Dymova T. V., Main and related factors impact on the environment of the reed fires, Astrakhanskii vestnik ekologicheskogo obrazovaniya, 2019, No. 2, pp. 210–214 (in Russian).
  7. Zharinov S. N., Golubeva E. I., Influence of forest fire on mortality rates of population: a case study of Tver oblast, Izvestiya Rossiiskoi akademii nauk. Ser. Geograficheskaya, 2018, No. 4, pp. 96–103 (in Russian), DOI: 10.1134/S2587556618040179.
  8. Krivoshei V. A., The Volga River: Problems and Solutions, Moscow: Zhurnal “RT”, 92 p. (in Russian).
  9. Loboiko V. F., Ovcharova A. Yu., Nikitina N. S., Features of the water regime of the Lower Volga and its impact on the condition of the north-western part of the Volga-Akhtuba floodplain, Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee obrazovanie, 2018, No. 4(52), pp. 89–96 (in Russian), DOI: 10.32786/2071-9485-2018-04-11.
  10. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284 (in Russian).
  11. Loupian E. A., Bartalev S. A., Balashov I. V., Egorov V. A., Ershov D. V., Kobets D. A., Senko K. S., Stytsenko F. V., Sychugov I. G., Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-158-175.
  12. Loupian E. A., Stytsenko F. V., Senko K. S., Balashov I. V., Mazurov A. A., Burnt area assessment using MODIS Collection 6 active fire data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 178–192 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-178-192.
  13. Shinkarenko S. S., Assessment of steppe burning dynamics in Astrakhan Region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 138–146 (in Russian), DOI: 10.21046/2070-7401-2018-15-1-138-146.
  14. Shinkarenko S. S., Fire regime of North Caspian landscapes according to the data of active burning centres, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 121–133 (in Russian), DOI: 10.21046/2070-7401-2019-16-1-121-133.
  15. Shinkarenko S. S., Berdengalieva A. N., Analysis of steppe fires long-term dynamics in Volgograd Region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 98–110 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-98-110.
  16. Shinkarenko S. S., Doroshenko V. V., Berdengalieva A. N., Komarova I. A. (2021a), Dynamics of arid landscapes burning in Russia and adjacent territories based on active fire data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 149–164 (in Russian), DOI: 10.21046/2070-7401-2021-18-1-149-164.
  17. Shinkarenko S. S., Ivanov N. M., Berdengalieva A. N. (2021b), Spatio-temporal dynamics of burnt areas in federal protected areas of South-East of the European part of Russia, Nature Conservation Research, 2021, Vol. 6, No. 3, pp. 23–44 (in Russian), DOI: 10.24189/ncr.2021.035.
  18. Shinkarenko S. S., Bartalev S. A., Berdengalieva A. N., Ivanov N. M., Spatio-temporal analysis of burnt area in The Lower Volga floodplain, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 1, pp. 143–157 (in Russian), DOI: 10.21046/2070-7401-2022-19-1-143-157.
  19. Chung Y. S., Le H. V., Detection of forest-fire smoke plumes by satellite imagery, Atmospheric Environment, 1984, Vol. 18, No. 10, pp. 2143–2151, DOI: 10.1016/0004-6981(84)90201-4.
  20. Fu Y., Li R., Wang X., Bergeron Y., Valeria O., Chavardes R. D., Wang Y., Hu J., Fire Detection and Fire Radiative Power in Forests and Low-Biomass Lands in Northeast Asia: MODIS versus VIIRS Fire Products, Remote Sensing, 2020, Vol. 12, No. 18, Art. No. 2870, DOI: 10.3390/rs12182870.
  21. Giglio L., Loboda T., Roy D. P., Quale B., Justice C. O., An active-fire based burned area mapping algorithm for the MODIS sensor, Remote Sensing of Environment, 2020, Vol. 113, pp. 408–420, DOI: 10.1016/j.rse.2008.10.006.
  22. Kuzmina Zh. V., Treshkin S. E., Shinkarenko S. S., Effects of River Control and Climate Changes on the Dynamics of the Terrestrial Ecosystems of the Lower Volga Region, Arid Ecosystems, 2018, Vol. 8, No. 4, pp. 231–244, DOI: 10.1134/S2079096118040066.
  23. Li F., Zhang X., Kondragunta S., Biomass Burning in Africa: An Investigation of Fire Radiative Power Missed by MODIS Using the 375 m VIIRS Active Fire Product, Remote sensing, 2020, Vol. 12, No. 10, Art. No. 1561, DOI: 10.3390/rs12101561.
  24. Lozin D. V., Balashov I. V., Loupian E. A., Possibilities of near real-time forest cover damage estimation based on fires radiative power data, IOP Conf. Series: Earth and Environmental Science, 2021, Vol. 806, 012019, DOI: 10.1088/1755-1315/806/1/012019.
  25. Pavleichik V. M., Chibilev A. A., Steppe fires in conditions the regime of reserve and under changing anthropogenic impacts, Geography and Natural Resources, 2018, Vol. 39, No. 3, pp. 212–221, DOI: 10.1134/S1875372818030046.
  26. Pereira G., Longo K. M., Freitas S. R., Mataveli G., Oliveira V. J., Santos P. R., Rodrigues L. F., Cardozo F. S., Improving the South America wildfires smoke estimates: Integration of polar-orbiting and geostationary satellite fire products in the Brazilian biomass burning emission model (3BEM), Atmospheric Environment, 2022, Vol. 273, 118954, DOI: 10.1016/j.atmosenv.2022.118954.
  27. Ponomarev E. I., Litvintsev K. Yu., Ponomareva T. V., Shevtsov E. G., Yakimov N. D., Satellite monitoring of the wildfire in Siberia and fire emissions estimation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 6, pp. 45–50, DOI: 10.21046/2070-7401-2020-17-6-45-50.
  28. Sperling S., Wooster M. J., Malamud B. D., Influence of Satellite Sensor Pixel Size and Overpass Time on Undercounting of Cerrado/Savannah Landscape-Scale Fire Radiative Power (FRP): An Assessment Using the MODIS Airborne Simulator, Fire, 2020, Vol. 3, No. 2, p. 11, DOI:10.3390/fire3020011.
  29. Solodovnikov D. A., Shinkarenko S. S., Present-Day Hydrological and Hydrogeological Regularities in the Formation of River Floodplains in the Middle Don Basin, Water Resources, 2020, Vol. 47, No. 6, pp. 719–728, DOI: 10.1134/S0097807820060135.