ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 70-78

Geostatistics in agricultural science taking into account global climate change in the strategy of regulating agrotechnological solutions

Yu.G. Zakharyan 1 , Yu.G. Yanko 1 
1 Agrophysical Research Institute, Saint Petersburg, Russia
Accepted: 26.04.2022
DOI: 10.21046/2070-7401-2022-19-2-70-78
The paper shows that the analytical approximation of efficiency variograms, planning strategies for agrotechnological solutions to the spatial and temporal heterogeneity of agricultural areas, and, consequently, the feasibility of applying precise agricultural technology in each specific case depends on soil and climate variability. It should be noted that there are a fairly large number of applied agrostatistical programs that allow distributing agrometeorological data over two- and three-dimensional fields, identifying trends and selecting the appropriate approximate dependencies of the tasks provided through computerization taking into account variogram analysis. For geoinfrastructure, within the framework of the discussed methodology, the fact is shown and illustrated that natural and man-made disasters affect our living planet in the same way as the strategy of planned adaptations of technological impacts. Reduction of risks in agriculture under global climate change can be achieved by appropriate agrotechnological efforts taking into account varying spatio-temporal phenomena and forecasting the processes of its transformation. The paper considers the tasks of choosing the application of optimal differentiated agrotechnological solutions and the time interval for the event. The solution of the statistical problem of the rational choice of probabilistic distributions of the productivity of agricultural crops suggests the possibility of using detailed geostatistical information on efficiency under various weather phenomena, on various types of soils and for various ameliorative technological impacts.
Keywords: variogram analysis, planning strategy, spatiotemporal distribution, geostatistics, differentiated agricultural technology, melioration
Full text


  1. Dubenok N. N., Yanko Yu. G., Petrushin A. F., Kalinichenko R. V., Remote sensing data in land-reclamation system and reclaimed land management assessment, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 96–104 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-96-104.
  2. Zakharyan Yu. G., Otsenka effektivnosti adaptatsii agrotekhnologicheskikh reshenii k prostranstvenno-vremennoi neodnorodnosti sel’skokhozyaistvennykh zemel’: Diss. dokt. s.-kh. nauk (Assessment of the effectivenes of adaptation of agro-technological solution to spatial and temporal heterogeneity of agricultural land, Dr. agricult. sci. thesis), Saint Petersburg: ARI, 2018, 272 p. (in Russian).
  3. Zakharyan Yu. G., Komarov A. A., Prospect for geostatistic application for analyzing plant state on the basi of remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 140–148 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-140-148.
  4. Komarov A. A., Zakharyan Yu. G., Irmulatov B. R., Evaluation and analytical approximation of variogram for agricultural field in the condition of the Akmolinsky Region of Kazakhstan, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 182–191 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-182-191.
  5. Kosmicheskie issledovaniya zemnykh resursov. Metody i sredstva izmereniya i obrabotki informatsii (Space Studie of Earth Resources. Method and tool for measuring and processing information), Moscow: Nauka, 1976, 386 p. (in Russian).
  6. Loupian E. A., Denisov P. V., Sereda I. I., Troshko K. A., Plotnikov D. E., Tolpin V. A., Analysis of winter crop development in the southern region of Russia in spring 2020 based on remote monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 285–291 (in Russian), DOI: 10.21046/2070-7401-2020-17-2-285-291.
  7. Yakushev V. V., Tochnoe zemledelie: teoriya i praktika (Precision agriculture: theory and practice), Saint Petersburg: Agrophysical Research Institute, 2016, 364 p. (in Russian).
  8. Isaak E. H., Srivastava R. M., Applied Geostatistics, New York: Oxford University Press, 1989, 561 p.
  9. Kanevsky M., Arutyunyan R., Bolshov L., Demyanov V., Maignan M., Artificial neural network and spatial estimation of Chernobl fallout, Geoinformatics, 1996, Vol. 7, No. 1-2, pp. 5–11, DOI: 10.6010/geoinformatics1990.7.1-2_5.
  10. Lamb H. H., Woodroffe A., Atmospheric circulation during the last ice age, Quaternary Research, 1970, Vol. 1, No. 1, pp. 29–58, DOI: 10.1016/0033-5894(70)90010-4.
  11. Matheron G., The theory of regionalized variable and applications, Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau, 1971, No. 5, 211 p.
  12. Webster R., Oliver M. A., Geostatistics for Environmental Scientists, 2nd Edition, Chichester, John Willey and Sons, 2007, 336 p.
  13. Zhang Q., Precision agriculture technology for crop farming, USA: CRC, 2015, 360 p.