ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 23-31

Simulation of satellite microwave radio interferometric measurements for Earth remote sensing applications

M.T. Smirnov 1 
1 Kotelnikov Institute of Radio Engineering and Electronics RAS, Moscow, Russia
Accepted: 25.03.2022
DOI: 10.21046/2070-7401-2022-19-2-23-31
One of the problems in microwave radiometric remote sensing of the Earth from satellites is the relatively low spatial resolution of the devices, due to the need for large antennas. This work is devoted to one of the possible ways to solve the problem by using methods of radio interferometry (RI) or passive aperture synthesis. The paper considers a theoretical model of RI measurements applied to solving problems of the Earth remote sensing. Methods to retrieve microwave brightness temperature of the Earth using RI measurements are analyzed. The developed software package for measurement simulation allows interactive defining the Earth observation area and the characteristics of the antenna system. As a test field, a matrix of microwave brightness temperatures of the real emission field of the Earth was used. The errors of reconstruction of the angular distribution of the microwave brightness temperatures field of natural objects depending on the measurement errors of the visibility function are estimated. Measurement errors are estimated by adding a normally distributed noise component with a given standard deviation to the calculated visibility function, followed by the restoration of the microwave brightness temperature field. The ways of increasing the accuracy of the RI method are analyzed. In particular, the possibility of combining high spatial resolution RI measurements with panoramic measurements with lower resolution but high accuracy of measurements of microwave brightness temperatures is considered.
Keywords: radio interferometer, remote sensing of the Earth, numerical simulation
Full text


  1. Anterrieu E., Khazaal A., Brightness Temperature Map Reconstruction from Dual-Polarimetric Visibilities in Synthetic Aperture Imaging Radiometry, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 3, pp. 606–612, DOI: 10.1109/TGRS.2007.914799.
  2. Corbella I., Duffo N., Vall-llossera M., Camps A., Torres F., The visibility function in interferometric aperture synthesis radiometry, IEEE Trans. Geoscience and Remote Sensing, 2004, Vol. 42, No. 8, pp. 1677–1682, DOI: 10.1109/TGRS.2004.830641.
  3. Corbella I., Torres F., Camps A., Duffo N., Vall-llossera M., Brightness-Temperature Retrieval Methods in Synthetic Aperture Radiometers, IEEE Trans. Geoscience and Remote Sensing, 2009, Vol. 47, No. 1, pp. 285–294, DOI: 10.1109/TGRS.2008.2002911.
  4. Font J., Camps A., Borges A., Martín-Neira M., Boutin J., Reul N., Kerr Y., Hahne A., Mecklenburg S., SMOS: The Challenging Sea Surface Salinity Measurement from Space, Proc. IEEE, 2010, Vol. 98, No. 5, pp. 649–665, DOI: 10.1109/JPROC.2009.2033096.
  5. Lambrigtsen B., Brown S. T., Gaier T., Herrell L., Kangaslahti P., Tanner A., Monitoring the Hydrologic Cycle with the PATH Mission, Proc. IEEE, 2010, Vol. 98, No. 5, pp. 862–877, DOI: 10.1109/JPROC.2009.2031444.
  6. Lambrigtsen B., Gaier T., Kangaslahti P., Lim B., Tanner A., Ruf C., Enabling the NASA decadal-survey “PATH” mission, Proc. IGARSS’16, Beijing, 2016, pp. 3949–3951, DOI: 10.1109/IGARSS.2016.7730026.
  7. Le Vine D., Griffis A., Swift C., Jackson T., ESTAR: a synthetic aperture microwave radiometer for remote sensing applications, Proc. IEEE, 1994, Vol. 82, No. 12, pp. 1787–1801, DOI: 10.1109/5.338071.
  8. Zhang Ch., Liu H., Wu Ji, Zhang Sh., Yan J., Niu L., Sun W., Li H., Imaging Analysis and First Results of the Geostationary Interferometric Microwave Sounder Demonstrator, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, No. 1, pp. 207–218, DOI: 10.1109/TGRS.2014.2320983.