ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 57-69

Creation and radiometric normalisation of cloud-free composite satellite images of snow-covered terrestrial surface for forest monitoring

S.А. Bartalev 1, 2 , I.I. Vorushilov 1, 2 , V.A. Egorov 1, 2 
1 Space Research Institute RAS, Moscow, Russia
2 Center for Forest Ecology and Productivity RAS, Moscow, Russia
Accepted: 22.04.2022
DOI: 10.21046/2070-7401-2022-19-2-57-69
The visible and near infrared remote sensing data collected over snow-covered terrestrial surface are highly informative for forest monitoring purposes. The use of such data leads to an increase in the brightness contrast between forested and forest-free terrestrial surface, as well as to a decrease of the background spectral-reflectance variability. The proposed method for constructing cloud-free composite images is based on time series of remote sensing data and includes at the first stage delineation of snow-free lands, as well as forest-free and forested areas with snow covered terrestrial surface. The subsequent remote sensing data time series statistical analysis is aimed at classification errors filtering, reconstructing data time series to fill in gaps and constructing composite images in a given time interval of satellite observations. The proposed method has demonstrated its applicability to the construction of composite images of snow covered terrestrial surface for the entire territory of Russia using the data collected by MODIS, Proba V and Sentinel 2 remote sensing systems. To increase the analysis efficiency of the multi-annual time series of composite satellite images, a method for their mutual radiometric normalisation has been developed. The method suppresses interannual variations of the spectral reflectance values over the terrestrial surface that are not related to the forest dynamics. The method of radiometric normalisation of composite satellite images of the snow-covered terrestrial surface is based on the use of localised normalising ratios coefficients estimated from the surface reflectance values for forest free reference areas. The application of the radiometric normalisation method for the time series of composite images developed with MODIS data for the period 2001–2021 for the Russian territory indicates a decrease in interannual variations of spectral reflectance values for 93 % pixels corresponding to snow covered terrestrial surface.
Keywords: remote sensing, composite images, snow cover, forest monitoring
Full text

References:

  1. Bartalev S. A., Egorov V. A., Ershov D. V., Isaev A. S., Loupian E. A., Plotnikov D. E., Uvarov I. A., Mapping of Russia’s vegetation cover using MODIS satellite spectroradiometer data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 285–302.
  2. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian).
  3. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284 (in Russian).
  4. Miklashevich T. S., Bartalev S. A., Plotnikov D. E., Interpolation algorithm for the recovery of long satellite data time series of vegetation cover observation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 143–154 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-143-154.
  5. Khovratovich T. S., Bartalev S. A., Kashnitskii A. V., Forest change detection based on sub-pixel estimation of crown cover density using bitemporal satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 102–110 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-102-110.
  6. Bartalev S. A., Belward A., Ershov D. V., Isaev A. S., A New SPOT4-VEGETATION Derived Land Cover Map of Northern Eurasia, Intern. J. Remote Sensing, 2003, Vol. 24, No. 9, pp. 1977–1982.
  7. Bartalev S. A., Egorov V. A., Loupian E. A., Khvostikov S. A., A new locally-adaptive classification method LAGMA for large-scale land cover mapping using remote-sensing data, Remote Sensing Letters, 2014, Vol. 5(1), pp. 55–64, DOI: 10.1080/2150704X.2013.870675.1.
  8. Hall D. K., Riggs G. A., Salomonson V. V., Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer (MODIS) data, Remote Sensing of Environment, 1995, Vol. 54, pp. 127–140.
  9. Hall D. K., Riggs G. A., Salomonson V. V., DiGirolamo N. E., Bayr K. J., MODIS snow-cover products, Remote Sensing of Environment, 2002, Vol. 83, pp. 181–194.
  10. Holben B. N., Characterization of maximum value composites from temporal AVHRR data, Intern. J. Remote Sensing, 1986, Vol. 7, pp. 1417–1434.
  11. Khovratovich T. S., Bartalev S. A., Kashnitskiy A. V., Balashov I. V., Ivanova A. A., Forest change detection based on sub-pixel tree cover estimates using Landsat-OLI and Sentinel 2 data, IOP Conf. Series: Earth and Environmental Science, IOP Publ., 2020, Vol. 507, No. 1, Art. No. 012011, DOI: 10.1088/1755-1315/507/1/012011.
  12. Pisek J., Chen J. M., Miller J. R., Freemantle J. R., Peltoniemi J. I., Simic A., Mapping forest background reflectance in a boreal region using multi-angle Compact Airborne Spectrographic Imager (CASI) data, IEEE Trans. Geoscience and Remote Sensing, 2010, Vol. 48, pp. 499–510.
  13. Riggs G. A., Hall D. K., MODIS Snow Products Collection 6 User Guide, National Snow and Ice Data Center, 2015, 66 p., available at: https://nsidc.org/sites/nsidc.org/files/files/MODIS-snow-user-guide-C6.pdf.
  14. Tran H., Nguyen P., Ombadi M., Hsu K., Sorooshian S., Qing X., A cloud-free MODIS snow cover dataset for the contiguous United States from 2000 to 2017, Scientific Data, 2019, Vol. 6, Art. No. 180300, https://doi.org/10.1038/sdata.2018.300.
  15. Zharko V. O., Bartalev S. A., Sidorenkov V. M., Forest growing stock volume estimation using optical remote sensing over snow-covered ground: a case study for Sentinel 2 data and the Russian Southern Taiga region, Remote Sensing Letters, 2020, Vol. 11, Issue 7, pp. 1–2, DOI: doi.org/10.1080/2150704X.2020.1755473.