ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 1, pp. 193-213

The possibilities of organizing long-term remote monitoring of large sources of anthropogenic pollution to assess their impact on the environment

E.A. Loupian 1 , А.М. Konstantinova 1 , A.V. Kashnitskii 1 , D.M. Ermakov 1, 2 , V.P. Savorskiy 2 , O.Yu. Panova 2 , A.A. Bril 1 
1 Space Research Institute RAS, Moscow, Russia
2 Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow Region, Russia
Accepted: 16.03.2022
DOI: 10.21046/2070-7401-2022-19-1-193-213
The study of the impact of large sources of anthropogenic pollution (LSAP) on the environment and the organization of monitoring of this impact is an important and urgent task. At the same time, in the case when it is required to control LSAP, which can affect large areas (hundreds of square kilometers), the solution of such problems is practically impossible without the use of remote, primarily satellite, methods that allow obtaining uniform objective information about the state such territories. A significant part of the territories located in the zone of influence of LSAP in Russia is sparsely populated and difficult to access, so obtaining constant information about their condition is virtually impossible without the use of satellite observations. Therefore, in recent years, methods and approaches have begun to actively develop, focused on the possibility of organizing remote monitoring of the regions where LSAP is located to assess their impact on the environment. Methods for organizing the processing of satellite data were also actively developed, with the use of which constant monitoring of the zones of influence of LSAP on the environment can be organized. In the future, this should allow organizing automated long-term remote monitoring of LSAP. This paper presents the main possibilities for organizing such monitoring, describes an experimental system for remote monitoring of the areas where various LSAP are located, created on the basis of the CKP “IKI-Monitoring” (http://ckp.geosmis.ru), and using the example of a comprehensive analysis of the impact of the Kachkanar mining and processing plant the possibilities of the available approaches to the analysis of satellite data and the created experimental system are presented on the surrounding region.
Keywords: sources of anthropogenic pollution, man-made waste, dumps, remote monitoring, plant objects, water objects, control areas, spectral indices, CKP “IKI-Monitoring”
Full text

References:

  1. Abramenko A. V., Kompleksnaya kharakteristika sostoyaniya prirodnoi sredy gorodskogo okruga Kachkanar Sverdlovskoi oblasti i ee izuchenie vo vneurochnoi deyatel’nosti s obuchayushchimisya (A comprehensive description of the state of the natural environment of the urban district of Kachkanar of the Sverdlovsk region and its study in extracurricular activities with student), Final qualifying work, Ekaterinburg: UGPU, 2019, 57 p. (in Russian).
  2. Alekseev Yu. V., Tyazhelye metally v agrolandshafte, nauchno-prakticheskoe posobie (Heavy metals in the agricultural landscape, scientific and practical manual), Saint Petersburg: PIYaF RAN, 2008, 216 p. (in Russian).
  3. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Current state and development prospects of satellite mapping methods of Russia’s vegetation cover, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 203–221 (in Russian).
  4. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian).
  5. Berezina O. A., Shikhov A. N., Abdullin R. K., The use of multi-temporal satellite images for environmental assessment in coal mining areas (by example of closed Kizel coal basin), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 144–158 (in Russan).
  6. Buznikov A. A., Timofeev A. A., Regional ecological monitoring: method and hardware/software complex for distant estimation of pollution to which heavy metals expose indicator species of vegetation, Regional’naya ekologiya, 2010, No. 3(29), pp. 9–17 (in Russan).
  7. Gornyy V. I., Kritsuk S. G., Lapytov I. S., Thermodynamic approach for remote mapping of ecosystem disturbance, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 179–194 (in Russian).
  8. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Khramtsov V. N., Verification of large scale maps of thermodynamic index ecosystem health disturbance, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 4, pp. 201–212 (in Russian).
  9. Gornyy V. I., Kiselev A. V., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Thermodynamic approach to satellite mapping of accumulated ecological losses of forest ecosystems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 124–136 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-124-136.
  10. State Report “On the state and protection of the environment in the Sverdlovsk region in 2015”, Ministry of Natural Resources and Environment of the Sverdlovsk region, Ekaterinburg, 2016, 312 p. (in Russian).
  11. State Report “On the state of the environment in the Sverdlovsk region in 2020”, Ministry of Natural Resources and Environment of the Sverdlovsk region, Ekaterinburg, 2021, 329 p. (in Russian).
  12. Grigorieva O. V., Drozdova I. V., Shilin B. V., Experimental substantiation of the capabilities of videospectral remote indication of short-term vegetation stress, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 78–88 (in Ruissian), DOI: 10.21046/2070-7401-2018-15-7-78-88.
  13. Ermakov D. M., Demenev A. D., Meshcheriakova O. Yu., Berezina O. A., Features of the development of a regional water index for monitoring the impact of acid mine water discharges on river systems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 222–237 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-222-237.
  14. Kalabin G. V., Evdokimova G. A., Gornyy V. I., Estimation of dynamics of grows of derelict lands in process of deleterious effect decrease of OJSC “Severonickel Combine” on environment, Gornyi zhurnal, 2010, No. 2, pp. 74–77 (in Russian).
  15. Kalabin G. V., Moiseenko T. I., Gornyy V. I., Kritsuk S. G., Soromotin A. V., Satellite monitoring of the reaction of the vegetation cover to the impact of the opencast mining company OLIMPIADA gold mine, Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2013, No. 1, pp. 177–184 (in Russian).
  16. Kalabin G. V., Gornyy V. I., Kritsuk S. G., Satellite monitoring of vegetation cover response to the impact of the enterprise for the development of the Sorsky copper-molybdenum deposit, Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2014, No. 1, pp. 153–161 (in Russian).
  17. Kalabin G. V., Gornyy V. I., Kritsuk S. G., Assessment of the environmental condition of the territory of Kachkanarsky GOK according to satellite monitoring data, Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2016, No. 2, pp. 179–187 (in Russian).
  18. Kalabin G. V., Gornyy V. I., Davidan T. A., Kritsuk S. G., Tronin A. A., The response of the tundra ecosystem to the removal of anthropogenic load from the Valkumey mine, Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2018, No. 2, pp. 146–153 (in Russian).
  19. Konstantinova A. M., Balashov I. V., Kashnitskii A. V., Loupian E. A., Mukhamedzhanov I. D., Unified technology for remote monitoring of natural and anthropogenic objects, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No 4, pp. 41–52 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-41-52.
  20. Kritsuk S. G., Gornyy V. I., Kalabin G. V., Latypov I. Sh., Regularities of Vegetation Index Annual Cycles in the Region of Sorsk Mining and Metallurgical Complex, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 13, pp. 228–237.
  21. Loupian E. A., Proshin A. A., Burtsev M. A., Kashnitskiiy A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobets D. A., Mazurov A. A., Marchenkov V. V., Matveev A. M., Radchenko M. V., Sychugov I. G., Tolpin V. A., Uvarov I. A., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  22. Loupian E. A., Konstantinova A. M., Balashov I. V., Kashnitskii A. V., Savorskiy V. P., Panova O. Yu., Development of a system for analyzing the state of environment in areas of large industrial facilities, tailing dumps, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 243–261 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-243-261.
  23. Loupian E. A., Proshin A. A., Burtsev M. A., Kashnitskiiy A. V., Balashov I. V., Bartalev S. A., Bril A. A., Egorov V. A., Zharko V. O., Konstantinova A. M., Kobets D. A., Mazurov A. A., Marchenkov V. V., Matveev A. M., Miklashevich T. S., Plotnikov D. E., Radchenko M. V., Stytsenko F. V., Sychugov I. G., Tolpin V. A., Uvarov I. A., Khvostikov S. A., Khovratovich T. S., Vega-Science system: design features, main capabilities and usage experience, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 9–31 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-9-31.
  24. Savorskiy V. P., Loupian E. A., Gornyy V. I., Ermakov D. M., Panova O. Yu., Konstantinova A. M., Methods and information tools for analyzing remote sensing data to detect changes in vegetation caused by industrial waste and dumps, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 31–47 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-31-47.
  25. Titov A. F., Kaznina N. M., Talanova V. V., Tyazhelye metally i rasteniya (Heavy metals and plants), Petrozavodsk: Karel’skii nauchnyi tsentr RAN, 2014, 194 p. (in Russain).
  26. Cleugh H. A., Leuning R., Mu Q., Running S. W., Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sensing of Environment, 2007, Vol. 106, pp. 285–304.
  27. Copernicus Sentinel-5P data products, TROPOMI Level 2 Ultraviolet Aerosol Index products, Version 01, European Space Agency, 2018, https://doi.org/10.5270/S5P-0wafvaf.
  28. Copernicus Sentinel-5P data products, TROPOMI Level 2 Carbon Monoxide total column products, Version 02 (2021a), European Space Agency, 2021, https://doi.org/10.5270/S5P-bj3nry0.
  29. Copernicus Sentinel-5P data products, TROPOMI Level 2 Nitrogen Dioxide total column products, Version 02 (2021b), European Space Agency, 2021, https://doi.org/10.5270/S5P-9bnp8q8.
  30. Feng L., Hu C., Chen X., Cai X., Tian L., Chen L., Human induced turbidity changes in Poyang Lake between 2000 and 2010: Observations from MODIS, J. Geophysical Research, 2012, Vol. 117, No. C7, https//: doi.org/10.1029/2011JC007864.
  31. Feyisa G. L., Meilby H., Fensholt R., Proud S. R., Automated water extraction index: a new technique for surface water mapping using Landsat imagery, Remote Sensing of Environment, 2014, Vol. 140, pp. 23–35, https://doi.org/10.1016/j.rse.2013.08.029.
  32. Fisher A., Flood N., Danahe T., Comparing Landsat water index methods for automated water classification in eastern Australia, Remote Sensing of Environment, 2016, Vol. 175, pp. 167–182, DOI: 10.1016/j.rse.2015.12.055.
  33. Follette-Cook M., Gupta P., Remote Sensing of Trace Gases, NASA Remote Sensing for Air Qualty Applications, March 20–23, 2018, Jakarta, Indonesia, 2018, 51 p.
  34. Gao B. C., A normalized difference water index for remote sensing of vegetation liquid water from space, Imaging Spectrometry, 1995, Vol. 2480, pp. 225–236, https://doi.org/10.1016/S0034-4257(96)00067-3.
  35. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Remote Mapping of Thermodynamic Index of Ecosystem Health Disturbance, J. Environmental Protection, 2010, Vol. 1, pp. 242–250.
  36. Hu C., A novel ocean color index to detect floating algae in the global oceans, Remote Sensing of Environment, 2009, Vol. 113, pp. 2118–2129, https://doi.org/10.1016/j.rse.2009.05.012.
  37. Hu M., Ma R., Cao Z., Xiong J., Xue K., Remote Estimation of Trophic State Index for Inland Waters Using Landsat-8 OLI Imagery, Remote Sensing, 2021, Vol. 13, Art. No. 1988, 24 p., DOI: 10.3390/rs13101988.
  38. Khudsar T., Mahmooduzzafar, I. M., Sairam R. K., Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua, Biologia Plantarum, 2004, Vol. 48, No. 2, pp. 255–260.
  39. Krupa S. G., Arndt U., Dempster J. P., Manning W. J., The Hohenheim long-term experiment: Effects of ozone, sulphur dioxide and simulated acidic precipitation on Tree Species in a Microcosm, Environmental Pollution, 1990, Vol. 68, No. 3–4, pp. 193–481.
  40. Loupian E. A., Bourtsev M. A., Proshin A. A., Kashnitskii A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobets D. A., Radchenko M. V., Tolpin V. A., Uvarov I. A., Usage Experience and Capabilities of the VEGA-Science System, Remote Sensing, 2022, Vol. 14, No. 1, Art. No. 77, 19 p., https://doi.org/10.3390/rs14010077.
  41. McFeeters S. K., The use of the normalized difference water index (NDWI) in the delineation of open water features, Intern. J. Remote Sensing, 1996, Vol. 17, No. 7, pp. 1425–1432, https://doi.org/10.1080/01431169608948714.
  42. Mustafa T. M., Modher H., Hassoon K. I., Abd M. H., Using water indices (NDWI, MNDWI, NDMI, WRI AND AWEI) to detect physical and chemical parameters by apply remote sensing and GIS techniques, Intern. J. Research — IJRG, 2017, Vol. 5, No. 10, pp. 117–128, https://doi.org/10.5281/zenodo.1040209.
  43. Pahlevan N., Ackleson S., Shaeffer B., Toward a satellite-based monitoring system for water quality, EOS: Trans. American Geophysical Union, 2018, Vol. 99, DOI: 10.1029/2018EO093913.
  44. Papathanaopoulou E., Simis S., Satellite-assisted monitoring of water quality to support the implementation of the Water Framework Directive, EOMORES white paper, 2019, 28 p., DOI: 10.5281/zenodo.3463050.
  45. Romanowska E., Igamberdiev A. V., Parys E., Gardeström P., Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants, Physiologia Plantarum, 2002, Vol. 116, No. 2, pp. 148–154, DOI: 10.1034/j.1399-3054.2002.1160203.x.
  46. Running S., Mu Q., Zhao M., MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC, 2017, DOI: 10.5067/MODIS/MOD16A2.006.
  47. Vassilev A., Berova M., Zlatev Z., Influence of Cd2+ on growth, chlorophyll content, and water relations in young barley plants, Biologia Plantarum, 1998, Vol. 41, No. 4, pp. 601–606.
  48. Wang X., Yang W., Water quality monitoring and evaluation using remote sensing techniques in China: a systematic review, Ecosystem Health and Sustainability, 2019, Vol. 5, No. 1, pp. 47–56, https://doi.org/10.1080/20964129.2019.1571443.
  49. Xu H., Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Intern. J. Remote Sensing, 2006, Vol. 27(14), pp. 3025–3033, DOI: 10.1080/01431160600589179.
  50. Zhang K., Thapa B., Ross M., Gann D., Remote sensing of seasonal changes and disturbances in mangrove forest: a case study from South Florida, Ecosphere, 2016, Vol. 7(6), pp. 1–23.
  51. Zhang T., Ren H., Qin Q., Zhang C., Sun Y., Surface water extraction from Landsat 8 OLI imagery using the LBV transformation, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10(10), pp. 4417–4429, DOI: 10.1109/JSTARS.2017.2719029.