ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 1, pp. 267-276

Thunderstorm activity and vortex structures in the atmosphere

N.I. Izhovkina 1 , S.N. Artekha 2 , N.S. Erokhin 2 , L.A. Mikhailovskaya 2 
1 Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, Troitsk, Moscow, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 09.02.2022
DOI: 10.21046/2070-7401-2022-19-1-267-276
Ionization of aerosol in the stratosphere and upper troposphere by precipitating particles of cosmic rays enhances the vortex activity of the atmosphere. An important role of the aerosol admixture is manifested in the generation of plasma vortices and the accumulation of energy and mass by the vortices in the atmosphere during moisture condensation. Due to the cascade nature of the ionization process, the effect of cosmic radiation turns out to be nonlinear. In plasma inhomogeneities, aperiodic electrostatic disturbances are stochastically excited, which play a significant role in the genesis of vortices. It is shown that the process of amplification of vortex structures in the atmosphere is influenced by feedback. The manifestation of feedbacks is stimulated by thunderstorm activity. Electromagnetic waves emitted by lightning discharges cause precipitation of particles of the Earth’s radiation belts, in particular, protons of the inner radiation belt with an energy of about 100 MeV. Ionization of aerosols in cascades of precipitating particles promotes the excitation of plasma MHD-mechanisms in the geomagnetic field. When Rossby vortices interact with plasma vortices, the atmospheric vortex structures intensify with increasing pressure gradients. Lightning discharges are associated with plasma vortices. With the growth of thunderstorm activity, fires in dry thunderstorms intensify the pumping of pollution into the atmosphere. With an increase in the concentration of contaminants, the plasma vortex activity and the associated thunderstorm activity increase.
Keywords: atmospheric vortex structures, electrostatic disturbances in plasma inhomogeneities, cellular structures in lightning discharges, feedback
Full text

References:

  1. Avdyushin S. I., Danilov A. D., The sun, the weather and the climate: today’s view of the problem (overview), Geomagnetizm i aeronomiya, 2000, Vol. 40, No. 5, pp. 3–14 (in Russian).
  2. Arumov G. P., Bukharin A. V., Use of the nonnormalized moments for determining the statistical parameters of nonspherical particles from their images, Measurement Techniques, 2018, Vol. 60, No. 11, pp. 1102–1108, DOI: 10.32446/0368-1025it.2017-11-22-26.
  3. Bondur V. G., Pulinets S. A., Kim G. A., Role of variations in galactic cosmic rays in tropical cyclogenesis: evidence of hurricane Katrina, Doklady Earth Sciences, 2008, Vol. 422, No. 1, pp. 1124–1128, DOI: 10.1134/S1028334X08070283.
  4. Erokhin N. S., Artekha S. N., Artekha N. S., Resonant tunneling of electromagnetic waves through gradient barriers in inhomogeneous plasma, Inzhenernaya fizika, 2019, No. 8, pp. 3–9 (in Russian), DOI: 10.25791/infizik.08.2019.806.
  5. Izhovkina N. I., Plasma vortices in the ionosphere and atmosphere, Geomagnetism and Aeronomy, 2014, Vol. 54, No. 6, pp. 802–812, DOI: 10.1134/S0016793214050077.
  6. Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Winter cyclones in the geomagnetic polar cap, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 273–281 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-273-281.
  7. Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Atmospheric vortices in a geomagnetic anomaly, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 299–306 (in Russian), DOI: 10.21046/2070-7401-2021-18-2-299-306.
  8. Krivolutsky A. A., Repnev A. I., Impact of space energetic particles on the earth’s atmosphere (a review), Geomagnetism and Aeronomy, 2012, Vol. 52, No. 6, pp. 685–716, DOI: 10.1134/S0016793212060060.
  9. Loginov V. F., The influence of solar activity and other external factors on the Earth’s climate, Fundamental’naya i prikladnaya klimatologiya, 2015, Vol. 1, pp. 163–182 (in Russian).
  10. Moiseev S. S., Sagdeev R. Z., Tur A. V., Khomenko G. A., Shukurov A. M., Physical mechanism of amplification of vortex disturbances in the atmosphere, Doklady Earth Sciences, 1983, Vol. 273, No. 3, pp. 549–553 (in Russian).
  11. Nezlin M. V., Snezhkin E. N., Rossby Vortices and Spiral Structures: Astrophysics and Plasma Physics in Shallow Water Experiments, Moscow: Nauka, 1990, 237 p. (in Russian).
  12. Onishchenko O. G., Pokhotelov O. A., Astafieva N. M., Generation of large-scale vortices and zonal winds in planetary atmospheres, Uspekhi Fizicheskikh Nauk, 2008, Vol. 51, No. 6, pp. 577–589, DOI: 10.1070/PU2008v051n06ABEH006588.
  13. Pudovkin M. I., Raspopov O. M., The mechanism of influence of solar activity on the state of the lower atmosphere and meteorological parameters, Geomagnetizm i aeronomiya, 1992, Vol. 32, No. 5, pp. 1–22 (in Russian).
  14. Sinkevich O. A., Maslov S. A., Gusein-zade N. G., Role of electric discharges in the generation of atmospheric vortices, Plasma Physics Reports, 2017, Vol. 43, No. 2, pp. 232–252, DOI: 10.1134/S1063780X17020131.
  15. Shafranov V. D., Electromagnetic waves in plasma, Voprosy teorii plazmy, 1973, Vol. 3, pp. 3–141 (in Russian).
  16. Artekha S. N., Belyan A. V., On the role of electromagnetic phenomena in some atmospheric processes, Nonlinear Processes in Geophysics, 2013, Vol. 20, pp. 293–304, DOI: 10.5194/npg-20-293-2013.
  17. Black R. A., Hallet J., Electrification of the Hurricane, J. Atmospheric Sciences, 1999, Vol. 56(12), pp. 2004–2028, DOI: 10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2.
  18. Fierro A. O., Shao X.-M., Hamlin T., Reisner J. M., Harlin J., Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of hurricanes Rita and Katrina, Monthly Weather Review, 2011, Vol. 139, No. 5, pp. 1492–1504, DOI: 10.1175/2010MWR3532.1.
  19. Ginzburg A. S., Gubanova D. P., Minashkin V. M., Influence of natural and anthropogenic aerosols on global and regional climate, Russian J. General Chemistry, 2009, Vol. 79(9), pp. 2062–2070, DOI: 10.1134/S1070363209090382.
  20. Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Interaction of atmospheric plasma vortices, Pure and Applied Geophysics, 2016, Vol. 173, No. 8, pp. 2945–2957, DOI: 10.1007/s00024-016-1325-9.
  21. Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Aerosol, plasma vortices and atmospheric processes, Izvestiya, Atmospheric and Oceanic Physics, 2018, Vol. 54, No. 11, pp. 1513–1524, DOI: 10.1134/s0001433818110038.
  22. Izhovkina N. I., Arteha S. N., Erokhin N. S., Mikhailovskaya L. A., Electrostatic Disturbances of Aerosol Atmospheric Plasma: Beaded Lightning, Pure and Applied Geophysics, 2020, Vol. 177, No. 11, pp. 5475–5482, DOI: 10.1007/s00024-020-02568-z.
  23. Kennel C. F., Petchek H. E., Limit on stably trapped particle fluxes, J. Geophysical Research, 1966, Vol. 71, No. 1, pp. 1–28.
  24. Lohmann U., Feichter J., Global indirect aerosol effects: a review, Atmospheric Chemistry and Physics, 2005, Vol. 5, pp. 715–737, DOI: 10.5194/acp-5-715-2005.
  25. Marshall T. C., Rust W. D., Electrical Structure and Updraft Speeds in Thunderstorms over the Southern Great Plains, J. Geophysical Research, 1995, Vol. 100, pp. 1001–1015, DOI: 10.1029/94JD02607.
  26. Mironova I. A., Aplin K. L., Arnold F., Bazilevskaya G. A., Harrison R. G., Krivolutsky A. A., Nicoll A., Rozanov E. V., Turunen E., Usoskin I. G., Energetic particle influence on the Earth’s atmosphere, Space Science Reviews, 2015, Vol. 194, pp. 1–96, DOI: 10.1007/s11214-015-0185-4.
  27. Pan L., Qie X., Wang D., Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean, Advances in Atmospheric Sciences, 2014, Vol. 31, pp. 581–592, DOI: 10.1007/s00376-013-3115-y.
  28. Price C., Asfur M., Yair Yo., Maximum hurricane intensity preceded by increase in lightning frequency, Nature Geoscience, 2009, Vol. 2, No. 5, pp. 329–332, DOI: 10.1038/NGEO477.
  29. Sato Y., Miyamoto Y., Tomita H., Large dependency of charge distribution in a tropical cyclone inner core upon aerosol number concentration, Progress in Earth and Planetary Science, 2019, Vol. 6, Art. No. 62, DOI: 10.1186/s40645-019-0309-7.
  30. Shumilov O. I., Vashenyuk E. V., Henriksen K., Quasi-drift effects of high-energy solar cosmic rays in the magnetosphere, J. Geophysical Research, 1993, Vol. 98, No. A10, pp. 17423–17427, DOI: 10.1029/93JA01050.
  31. Winn W. P., Hunayday S. J., Aulich G. D., Electric Field at the Ground Tornado, J. Geophysical Research, 2000, Vol. 105, No. D15, pp. 20145–20153, DOI: 10.1029/2000JD900215.
  32. Yuan T., Remer L. A., Pickering K. E., Yu H., Observational evidence of aerosol enhancement of lightning activity and convective invigoration, Geophysical Research Letters, 2011, Vol. 38, Issue 4, DOI: 10.1029/2010GL046052.