Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 1, pp. 239-252
Informativeness of OLCI data compared to in situ hyperspectral measurements in assessing freshwater ecosystems trophic status: the Tsimlyansk Reservoir case
B.L. Sukhorukov
1, 2 , N.V. Reshetnyak
2 , V.V. Saprygin
3 1 Water Problems Institute RAS, South Division, Rostov-on-Don, Russia
2 Hydrochemical Institute, Rostov-on-Don, Russia
3 Russian Information, Analytical and Research Water Management Center, Rostov-on-Don, Russia
Accepted: 22.02.2022
DOI: 10.21046/2070-7401-2022-19-1-239-252
The data obtained by remote spectrometric measurements during a multilevel synchronous experiment in August 2020 performed at the near-dam reach of the Tsimlyansk Reservoir, are presented. The phytoplankton chlorophyll a concentration, Cchl a, was determined from measurements performed at three levels. The data on the upper, satellite level were obtained from the site of the European Organization for Satellite Meteorology (EUMETSAT) with an OLCI multispectral scanner (Sentinel-3B). The remote recording was carried out with an S41 spectrometer (Laser LS) from the vessel from a high of 2 m. The spectral range of the portable device is 389–808 nm, the spectral resolution is 1.8 nm. At this level Cchl a was determined using previously constructed bio-optical models (BOM). At the same level water samples were taken simultaneously with the spectrometric survey for the subsequent analytical determination of Cchl a in the laboratory conditions. Comparison of the results obtained at different levels revealed a number of inconsistencies in the assessment of Cchl a for the water body studied in a hypereutrophic state. The results of evaluations of Cchl a differ by several times. Possible reasons of the noted inconsistencies were discussed. Insufficient informativeness of multispectral data for assessing the trophic status of such water bodies was demonstrated. There is a necessity of clarifying the algorithms for the interpretation of satellite data for hypereutrophic water bodies.
Keywords: multilevel experiment, remote spectrometry, remote sensing reflectance (Rrs), phytoplankton, chlorophyll a
Full textReferences:
- Vekhov D. A., Naumenko A. N., Gorelov V. P., Golokolenova T. B., Shevlyakova T. P., The current state and use of aquatic biological resources of the Tsimlyansk reservoir (2009–2013), In: Rybokhozyaistvennye issledovaniya na vodnykh ob”ektakh Evropeiskoi chasti Rossii, Saint Petersburg: FGBNU GosNIORKh, 2014, pp. 116–145 (in Russian), DOI: 10.13140/2.1.2469.7289.
- Golubickii B. M., Levin I. M., Tantashev M. V., Luminance coefficient of a semi-infinite layer of seawater, Izvestiya Akademii nauk SSSR, Fizika atmosfery i okeana, 1974, Vol. 10, No. 11, pp. 1235–1238 (in Russian).
- GOST 17.1.4.02-90. Voda. Metodika spektrofotometricheskogo opredeleniya khlorofilla a (GOST 17.1.4.02-90. Water. Method for the spectrophotometric determination of chlorophyll a), Moscow: Izd. standartov, 1990, 15 p. (in Russian).
- Zege E. P., Inzhenernye metody rascheta svetovykh polei v usloviyakh mnogokratnogo rasseyaniya. Rasprostranenie sveta v dispersnoi srede (Engineering methods for calculating light fields under multiple scattering conditions. Propagation of light in a dispersed medium), Minsk: Nauka i tehnika, 1982, pp. 84–105 (in Russian).
- Kopelevich O. V., Optika okeana. T. 1. Fizicheskaya optika okeana (Ocean Optics. Vol. 1. Physical Ocean Optics), Moscow: Nauka, 1983, 371 p. (in Russian).
- RD 52.24.729.2010. Distantsionnaya spektrometricheskaya s″emka vodnykh ob″ektov v vidimom diapazone voln s mostovykh perekhodov (RD 52.24.729.2010. Remote spectrometric survey of water bodies in the visible wavelength range from bridge crossings), Rostov-on-Don, 2010, 27 p. (in Russian).
- Sukhorukov B. L., Novikov I. V., Comparative analysis of two methods of interpretation of remote spectrometric data on the state of aquatic ecosystems, Optika atmosfery i okeana, 2001, Vol. 4, No. 10, pp. 944–949 (in Russian).
- Sukhorukov B. L., Garbuzov G. P., Nikanorov A. M., Assessment of the state of water bodies by the spectra of the brightness coefficient, Vodniye resursy, 2000, No. 5, pp. 579–588 (in Russian).
- Sukhorukov B. L., Kovaleva G. E., Nikanorov A. M., Sposob otsenki trofnosti vodnykh ob″ektov (Method for assessing the trophicity of water bodies), Patent RU 2632720, Reg. 09.10.2017 (in Russian).
- Sukhorukov B. L., Reshetnyak N. V., Kovaleva G. E., Bio-optical model of the Lower Don for assessing the phytoplankton chlorophyll a concentration by remote sensing spectrometric information, Nauka Yuga Rossii, 2020, Vol. 16, No. 2, pp. 41–50 (in Russian), DOI: 10.7868/S25000640200205.
- Shifrin K. S., Vvedenie v optiku okeana (Introduction to Ocean Optics), Leningrad: Gidrometeoizdat, 1983, 280 p. (in Russian).
- Doerffer R., Algorithm Theoretical Basis Document, Ocean Colour Turbid Water, Version 2.0, Document Ref: S3-L2-SD-03-C11-GKSS-ATBD, GKSS Research Center, Institute for Costal Research, 2010, 50 p., available at: https://sentinel.esa.int/documents/247904/349589/OLCI_L2_ATBD_Ocean_Colour_Turbid_Water.pdf.
- Kravitz J., Matthews M., Bernard S., Griffith D., Application of Sentinel 3 OLCI for chl-a retrieval over small inland water targets: Successes and challenges, Remote Sensing of Environment, 2020, Vol. 237, Art. No. 111562, DOI: 111562. 10.1016/j.rse.2019.111562.
- Liu H., He X., Li Q., Hu X., Ishizaka J., Kratzer S., Yang C., Shi T., Hu S., Zhou Q., Wu G., Evaluation of ocean colour atmospheric correction methods for Sentinel-3 OLCI using global automatic in-situ observations, IEEE Trans. Geoscience and Remote Sensing, 2021, 19 p., DOI: 10.1109/TGRS.2021.3136243, available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9654183&isnumber=4358825.
- Mobley C. D., Estimation of the remote-sensing reflectance from above-surface measurements, Applied Optics, 1999, Vol. 38(36), pp. 7442–7455, DOI: 10.1364/ao.38.007442.
- Mograne M. A., Jamet C., Loisel H., Vantrepotte V., Mériaux X., Cauvin A., Evaluation of five atmospheric correction algorithms over French optically-complex waters for the Sentinel-3A OLCI Ocean Color Sensor, Remote Sensing, 2019, Vol. 11(6), Art. No. 668, DOI: 10.3390/rs11060668.
- Mollaee S., Estimation of phytoplankton chlorophyll-a concentration in the western basin of Lake Erie using Sentinel-2 and Sentinel-3 data: Master thesis, Univ. Waterloo, Ontario, Canada, 2018, 93 p.
- Moore G., Mazeran C., Huot J. P., MERIS ATBD 2.6. Case II.S Bright Pixel Atmospheric Correction, European Space Agency, 2017, Issue 5.3, 82 p., available at: https://earth.esa.int/eogateway/documents/20142/37627/MERIS_ATBD_2.6_v5.3%20-%202017%20-%20BPAC.pdf.
- Morel A., Prieur L., Analysis of variations in ocean color, Limnology and Oceanography, 1977, Vol. 22, No. 4, pp. 709–722, DOI: 10.4319/lo.1977.22.4.0709.
- Moses W. J., Gitelson A. A., Perk R. L., Gurlin D., Rundquist D. C., Leavitt B., Barrow T. M., Brakhage P., Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data, Water Research, 2012, Vol. 46(4), pp. 993–1004, DOI: 10.1016/j.watres.2011.11.068.
- Moses W. J., Saprygin V., Gerasyuk V., Povazhny, V. V., Berdnikov S., Gitelson A. A., OLCI-based NIR-red models for estimating chlorophyll-a concentration in productive coastal waters — a preliminary evaluation, Environmental Research Communications, 2019, Vol. 1, Art. No. 011002, DOI: 10.1088/2515-7620/aaf53c.
- Ritchie R. J., Universal chlorophyll equations for estimating chlorophylls a, b, c and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents, Photosynthetica, 2008, Vol. 46, pp. 115–126, DOI: 10.1007/s11099-008-0019-7.
- Sentinel-3 OLCI Marine User Handbook, EUMETSAT, 2021, Doc. No. EUM/OPS-SEN3/MAN/17/907205, Issue v2G e-signed, 48 p., available at: https://www-cdn.eumetsat.int/files/2021-03/Sentinel-3%20OLCI%20Marine%20User%20Handbook.pdf.
- Smith M. E., Robertson Lain L., Bernard S., An optimized chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters, Remote Sensing of Environment, 2018, Vol. 15, pp. 217–227, DOI: 10.1016/j.rse.2018.06.002.