ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 99-108

Development of a radar complex for oil spill detection

A.V. Ermoshkin 1, 2 , I.A. Kapustin 1, 2 , N.A. Bogatov 1, 3 , A.A. Molkov 1, 3 , E.I. Poplavsky 1, 3 , N.S. Rusakov 1, 3 , A.R. Yunisov 3 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
3 OOO Radionavigation Company, Nizhny Novgorod, Russia
Accepted: 28.10.2021
DOI: 10.21046/2070-7401-2021-18-6-99-108
The paper presents the first results on the development of an automated high-resolution remote radar system called Ecoradar developed for monitoring water areas for the purpose of automatic detection of film pollution on a wavy water surface. The complex is based on digital coherent panoramic radar manufactured by Micran, operating in the X band on horizontal polarization. An algorithm for automatic detection of film pollution on radar images of a wavy water surface has been developed. The algorithm is based on neuron-like networks, and most of the algorithm is implemented using Nvidia CUDA technology, which minimizes the operating time. To test the algorithm, we used data from previously conducted field experiments to study the kinematics of film pollution based on radar observations in the water area of the Gorky reservoir and the coastal zone of the Black Sea. The paper presents the limitations and recommendations for the use of Ecoradar for the detection of film pollution. The detection range of film pollution at a radar installation height of 12 m above water level and favorable wind-wave conditions reaches 1000 m. The minimum area of confidently detectable contamination is estimated at 500 m2.
Keywords: radar, film pollution, automated complex, environmental monitoring
Full text


  1. Ermakov S. A., Panchenko A. R., Talipova T. G., Suppression of high-frequency wind waves by artificially created surface films, Izvestiya AN USSR. Ser. Fizika atmosfery i okeana, 1985, Vol. 21, pp. 76–82 (in Russian).
  2. Ermoshkin A. V., Kapustin I. A., Molkov A. A., Danilicheva O. A., Poplavskii E. I., Rusakov N. S., Investigation of morphological features of film pollution on water surface by radar sensing data, Nauchnye problemy vodnogo transporta, 2020, Vol. 64, pp. 49–58 (in Russian), DOI: 10.37890/jwt.vi64.96.
  3. Ivanova N. A., Radiolokatsionnoe zondirovanie poverkhnostnykh zagryaznenii morya iz kosmosa: model’nye issledovaniya i nekotorye prilozheniya: Diss. kand. fiz.-mat. nauk (Radar sensing of surface pollution of the sea from space: model studies and some applications, Cand. phys. math. sci. thesis), Saint Petersburg, 2008, 161 p. (in Russian).
  4. Kapustin I. A., Ermoshkin A. V., Bogatov N. A., Molkov A. A., On the estimation of the contribution of near-surface wind to the kinematics of slicks on the sea surface under conditions of finite wave fetch, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 163–172 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-163-172.
  5. Kapustin I. A., Ermoshkin A. V., Molkov A. A., Baza dannykh radiolokatsionnykh nablyudenii kinematiki slikov na morskoi poverkhnosti (Database of radar observations of the kinematics of slicks on the sea surface), Certificate of state registration of date base No. 2020620562 (RU), Reg. 25.03.2020 (in Russian).
  6. Korinenko A. E., Malinovsky V. V., Kudryavtsev V. N., Radar contrast of artificial slicks at small grazing angles, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 185–194 (in Russian), DOI: 10.21046/2070-7401-2017-14-2-185-194.
  7. Levich V. G., Wave damping by surfactant films, I, II, J. Experimental and Theoretical Physics, 1940, Vol. 10, No. 11, pp. 1296–1304, 1941, Vol. 11, No. 2/3, pp. 340–345 (in Russian).
  8. Molkov A. A., Kapustin I. A., Ermoshkin A. V., Ermakov S. A., Remote sensing methods for measuring the thickness of oil/oil product films on the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 9–27 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-9-27.
  9. Skolnik M. I., Radar handbook, New York: McGraw-Hill, 1970, 1536 p.
  10. Trofimov M. S., Ispol’zovanie impul’snykh beregovykh i sudovykh RLS millimetrovogo diapazona voln dlya obnaruzheniya razlivov nefti: Diss. kand. tekhn. nauk (The use of pulsed coastal and ship radars of the millimeter wave range for detecting oil spills, Cand. techn. sci. thesis), Saint Petersburg, 2012, 110 p. (in Russian).
  11. Cini R., Lombardini P. P., Damping effect of monolayers on surface wave motion in liquid, J. Colloid and Interface Science, 1978, Vol. 65(12), pp. 387–389, DOI: 10.1016/0021-9797(78)90170-4.
  12. Dorrestein R., General linearized theory of the effect of surface films on water ripples, Proc. Koninklijke Nederlandse Akademie van Wetenschappen, 1951, Vol. 54(4), pp. 260–272.
  13. Ermakov S. A., Sergievskaya I. A., Gushchin L. A., Damping of gravity-capillary waves in the presence of oil slicks according to data from laboratory and numerical experiments, Izvestiya, Atmospheric and Oceanic Physics, 2012, Vol. 48, pp. 565–572, DOI: 10.1134/S000143381204007X.
  14. Valenzuela G. R., Theories for the interaction of electromagnetic and oceanic waves — a review, Boundary-Layer Meteorology, 1978, Vol. 13, pp. 61–85, DOI: 10.1007/BF00913863.