ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 57-72

Spectral features of microwave radiation of coarse-grained and layered snow, limiting the capabilities of modern algorithms for snow depth estimations by the method of passive remote sensing from space

V.A. Golunov 1 
1 Kotelnikov Institute of Radio Engineering and Electronics RAS, Moscow, Russia
Accepted: 03.12.2021
DOI: 10.21046/2070-7401-2021-18-6-57-72
This work is based on an experimental study of the dependences of the total reflection and transmission coefficients of thermal radiation from dry snow at frequencies of 22.2 and 37.5 GHz. Samples of snow with fine and coarse structures have been investigated. On the basis of experimental data, the possibilities of snow depth estimations by the method of passive remote sensing from space are considered. Almost all modern algorithms for snow depth estimations are based on the linear dependence of the difference between the brightness temperatures of the snow cover, measured at two base frequencies 18–19 and 35–37 GHz, on the snow thickness. It is shown that as the size of snow particles increases to 2 mm in a single-layer cover, this difference increases nonlinearly, but unambiguously, while the interval of values of the layer thickness, where the difference depends on the thickness linearly, decreases to 0.2 m. When the particle size increases over 2 mm the difference decreases until the sign changes. The difference in brightness temperatures of a layered snow cover depends on its thickness ambiguously, especially in the presence of a layer of coarse-grained snow. The problem of reconstructing the thickness of a snow cover with an unknown structure from the measured difference in radio brightness temperatures at frequencies of 18–19 and 35–37 GHz has no solution.
Keywords: remote sensing, microwave radiometry, snow depth algorithm
Full text

References:

  1. Golunov V. A., Coherent attenuation of electromagnetic waves by weakly absorbing dense random discrete (snow-like) media, J. Communications Technology and Electronics, 2015, Vol. 60, No. 1, pp. 29–34.
  2. Golunov V. A., Laboratory method of experimental study of the regularities of microwave thermal radiation of dry snow cover, Zhurnal radioelektroniki, 2018, No. 10 (in Russian), available at: http://jre.cplire.ru/jre/oct18/15/text.pdf.
  3. Golunov V. A. (2019a), Microwave scattering in layered snow, Radioelektronika. Nanosistemy. Informatsionnye tekhnologii, 2019, Vol. 11, No. 1, pp. 39–48 (in Russian).
  4. Golunov V. A. (2019b), Scattering of thermal microwave radiation by density irregularities of freshly fallen and fine-grained snow, J. Communications Technology and Electronics, 2019, Vol. 64, No. 10, pp. 1065–1072.
  5. Golunov V. A., Khokhlov G. I., The exponent of the frequency dependence of microwave backscattering from dry snow and artificial snow-like media, Zhurnal radioelektroniki, 2017, No. 9, 16 p. (in Russian), available at: http://jre.cplire.ru/jre/sep17/6/text.pdf.
  6. Golunov V. A., Korotkov V. A., Sukhonin E. V., Scattering effects upon emission of millimeter waves from the atmosphere and snow cover, Itogi nauki i tekhniki, Ser. Radiotekhnika, Moscow: VINITI, 1990, Vol. 41, pp. 68–136 (in Russian).
  7. Golunov V. A., Kuz’min A. V., Skulachev D. P., Khokhlov G. I., Experimental results on the frequency dependence of attenuation, scattering, and absorption of millimeter waves in a dry snow cover, J. Communications Technology and Electronics, 2017, Vol. 62, No. 9, pp. 951–959.
  8. Golunov V. A., Marechek S. V., Khokhlov G. I., Features of the microwave radiation scattering in dry fluffy snow, Zhurnal radioelektroniki, 2018, No. 6, 16 p. (in Russian), available at: http://jre.cplire.ru/jre/jun18/2/text.pdf.
  9. Kitaev L. V., The analysis of snow storage character with the satellite information using, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 4, pp. 118–124 (in Russian).
  10. Amlien J., Remote sensing of snow with passive microwave radiometers — A review of current algorithms, Report No. 1019, Norsk Regnesentral, Norwegian Computing Center, 2008, 52 p.
  11. Armstrong R. L., Brodzik M. J., Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms, Annals of Glaciology, 2002, Vol. 34, pp. 38–44.
  12. Armstrong R. L., Chang A., Rango A., Josberger E., Snow depths and grain-size relationships with relevance for passive microwave studies, Annals of Glaciology, 1993, Vol. 17, pp. 171–176.
  13. Azar A. E., Ghedira H., Romanov P., Mahani S., Khanbilvardi R., Time series analysis and algorithm development for estimating SWE in Great Lakes Area using microwave data, Proc. 63rd Eastern Snow Conf., Newark, Delaware, USA, 2006, pp. 105–120.
  14. Barnett T. P., Adam J. C., Lettenmaier D. P., Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 2005, Vol. 438, pp. 303–309.
  15. Boyarskii D. A., Tikhonov V. V., The influence of stratigraphy on microwave radiation from natural snow cover, J. Electromagnetic Waves and Applications, 2000, Vol. 14, No. 9, pp. 1265–1285.
  16. Chang A. C. T., Foster J. L., Hall D. K., Nimbus 7 SMMR derived global snow cover parameters, Annals of Glaciology, 1987, Vol. 8, pp. 39–44.
  17. Chen C., Nijssen B., Guo J., Tsang L., Wood A. W., Hwang J., Lettenmaier D. P., Passive microwave remote sensing of snow constrained by hydrological simulations, IEEE Trans. Geoscience and Remote Sensing, 2001, Vol. 39, pp. 1744–1756.
  18. Cohen J., Entekhabi D., Eurasian snow cover variability and Northern Hemisphere climate predictability, Geophysical Research Letters, 1999, Vol. 26, No. 3, pp. 345–348.
  19. Cohen J., Rind D., The effect of snow cover on the climate, J. Climate, 1991, Vol. 4, No. 7, pp. 689–706.
  20. Davenport I. J., Sandells M. J., Gurney R. J., The effects of variation in snow properties on passive microwave snow mass estimation, Remote Sensing of Environment, 2012, Vol. 118, pp. 168–175.
  21. Deems J. S., Painter T. H., Finnegand D. C., Lidar measurement of snow depth: a review, J. Glaciology, 2013, Vol. 59, No. 215, pp. 467–479.
  22. Derksen C., Walker A., Goodison B., A comparison of 18 winter seasons of in situ and passive microwave derived snow water equivalent estimates in Western Canada, Remote Sensing of Environment, 2003, Vol. 88, pp. 271–282.
  23. Derksen C., Lemmetyinen J., Toose P., Silis A., Pulliainen J., Sturm M., Physical properties of Arctic versus subarctic snow: Implications for high latitude passive microwave snow water equivalent retrievals, J. Geophysical Research: Atmospheres, 2014, Vol. 119, pp. 7254–7270.
  24. Dietz A., Kuenzer C., Gessner U., Dech S., Remote sensing of snow — a review of available methods, Intern. J. Remote Sensing, 2012, Vol. 33, Issue 13, pp. 4094–4134.
  25. Dong J., Walker J. P., Houser P. R., Factors affecting remotely sensed snow water equivalent uncertainty, Remote Sensing of Environment, 2005, Vol. 97, No. 1, pp. 68–82.
  26. Durand M., Liu D., The need for prior information in characterizing snow water equivalent from microwave brightness temperatures, Remote Sensing of Environment, 2012, Vol. 126, pp. 248–257.
  27. Durand M., Kim E. J., Margulis S. A., Molotch N. P., A first-order characterization of errors from neglecting stratigraphy in forward and inverse passive microwave modeling of snow, IEEE Geoscience and Remote Sensing Letters, 2011, Vol. 8, No. 4, pp. 730–734.
  28. Fuller M. C., Derksen C., Yackel J., Plot scale passive microwave measurements and modeling of layered snow using the multi-layered HUT model, Canadian J. Remote Sensing, 2015, Vol. 41, pp. 219–231.
  29. Golunov V. A., The millimeter wave response to volume density and grain size of dry homogeneous snow. An algorithm for retrieval of snow depth from radiometer data at the frequencies 22 and 37 GHz, Proc. MICRORAD’08, Florence, 2008, pp. 216–219.
  30. Hall D. K., Foster J. L., Salomonson V. V., Klein A. G., Chien J. Y. L., Development of a technique to assess snow-cover mapping errors from space, IEEE Trans. Geoscience and Remote Sensing, 2001, Vol. 39, pp. 432–438.
  31. Hall D. K., Kelly R. E. J., Riggs G. A., Chang A. T. C. Foster. J. L., Assessment of the relative accuracy of hemispheric-scale snow-cover maps, Annals of Glaciology, 2002, Vol. 34, pp. 24–30.
  32. Josberger E. G., Mognard N. M., A passive microwave snow depth algorithm with a proxy for snow metamorphism, Hydrological Processes, 2002, Vol. 16, No. 8, pp. 1557–1568.
  33. Kelly R., The AMSR-E snow depth algorithm: description and initial results, J. Remote Sensing Society of Japan, 2009, Vol. 29, No. 1, pp. 307–317.
  34. Kelly R., Chang A., Development of a passive microwave global snow depth retrieval algorithm for Special Sensor Microwave Imager (SSM/I) and Advance Microwave Scanning Radiometer‐EOS (AMSR‐E) data, Radio Science, 2003, Vol. 38, No. 4, pp. 8076–8088.
  35. Kelly R. E., Chang A. T. C., Tsang L., Foster J. L., A prototype AMSR-E global snow area and snow depth algorithm, IEEE Trans. Geoscience and Remote Sensing, 2003, Vol. 41, No. 2, pp. 230–242.
  36. Kubelka P., New contributions to the optics of intensely light-scattering materials. Part I, J. Optical Society of America, 1948, Vol. 38, No. 5, pp. 448–457.
  37. Künzi F., Patil S., Rott H., Snow-cover parameters retrieved from Nimbus-7 scanning multi-channel microwave radiometer (SMMR) data, IEEE Geoscience and Remote Sensing, 1982, Vol. GE- 20, pp. 452–467.
  38. Lakhankar T., Azar A. E., Shahroudi N., Powell A., Khanbilvardi R., Analysis of the effects of snowpack properties on satellite microwave brightness temperature and emissivity data, J. Remote Sensing and GIS, 2012, Vol. 1, No. 1, Art. No. 1000101, 6 p., DOI: 10.4172/ 2169-0049.1000101.
  39. Lemmetyinen J., Derksen C., Toose P., Prokschc M., Pulliainen J., Kontu A., Rautiainen K., Seppänen J., Hallikainen M., Simulating seasonally and spatially varying snow cover brightness temperature using HUT snow emission model and retrieval of a microwave effective grain size, Remote Sensing of Environment, 2015, Vol. 156, pp. 71–95.
  40. Liang D., Xu X., Tsang L., Andreadis K., Josberger E. G., The effects of layers in dry snow on its passive microwave emissions using dense media radiative transfer theory based on the quasicrystalline approximation (QCA/DMRT), IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 11, pp. 3663–3671.
  41. Luojus K., Pulliainen J., Takala M., Derksen C., Rott H., Nagler T., Solberg R., Wiesmann A., Metsämäki S., Malnes E., Bojkov B., Investigating the feasibility of the GlobSnow snow water equivalent data for climate research purposes, Proc. IGARSS’10, Honolulu, 2010, pp. 4851–4853.
  42. Matzler C., Passive microwave signatures of landscapes in winter, Meteorology and Atmospheric Physics, 1994, Vol. 54, pp. 241–260.
  43. Matzler C., Improved Born approximation for scattering of radiation in a granular medium, J. Applied Physics, 1998, Vol. 83, pp. 6111–6117.
  44. Montpetit B., Royer A., Roy A., Langlois A., Derksen C., Snow microwave emission modeling of ice lenses within a snowpack using the microwave emission model for layered snowpacks, IEEE Trans. Geoscience and Remote Sensing, 2013, Vol. 51, No. 9, pp. 4705–4717.
  45. Nolin A. W., Recent advances in remote sensing of seasonal snow, J. Glaciology, 2010, Vol. 56, No. 200, pp. 1141–1150.
  46. Picard G., Brucker L., Roy A., Dupont F., Fily M., Royer A., Harlow C., Simulation of the microwave emission of multi-layered snowpacks using the Dense Media Radiative transfer theory: the DMRT-ML model, Geoscientific Model Development, 2013, Vol. 6, pp. 1061–1078.
  47. Pulliainen J., Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations, Remote Sensing of Environment, 2006, Vol. 101, pp. 257–269.
  48. Pulliainen J. T., Grandell J., Hallikainen M. T., HUT snow emission model and its applicability to snow water equivalent retrieval, IEEE Trans. Geoscience and Remote Sensing, 1999, Vol. 37(3), pp. 1378–1390.
  49. Rees A., Lemmetyinen J., Derksen C., Pulliainen J., English M., Observed and modelled effects of ice lens formation on passive microwave brightness temperatures over snow covered tundra, Remote Sensing of Environment, 2010, Vol. 114, pp. 116–126.
  50. Rosenfeld S., Grody N., Anomalous microwave spectra of snow cover observed from Special Sensor Microwave/Imager measurements, J. Geophysical Research: Atmosphere, 2000, Vol. 105, pp. 14913–14926.
  51. Saberi N., Kelly R., Flemming M., Li Q., Review of snow water equivalent retrieval methods using spaceborne passive microwave radiometry, Intern. J. Remote Sensing, 2020, Vol. 41, No. 3, pp. 996–1018.
  52. Singh P. R., Gan T. Y., Retrieval of snow water equivalent using passive microwave brightness temperature data, Remote Sensing of Environment, 2000, Vol. 74, No. 2, pp. 275–286.
  53. Stogryn A., A study of the microwave brightness temperature of snow from the point of view of strong fluctuation theory, IEEE Trans. Geoscience and Remote Sensing, 1986, Vol. 24, pp. 220–231.
  54. Sturm M., Holmgren J., Liston G., A seasonal snow cover classification system for local to global applications, J. Climate, 1995, Vol. 8, pp. 1261–1283.
  55. Sturm M., Taras B., Liston G. E., Dercsen C., Jonas T., Lea J., Estimating snow water equivalent using snow depth data and climate classes, J. Hydrometeorology, 2010, Vol. 11, No. 6, pp. 1380–1394.
  56. Takala M., Luojus K., Pulliainen J., Dercsen C., Lemmetyinen J., Kärnä J.-P., Koskinen J., Bojkov B., Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements, Remote Sensing of Environment, 2011, Vol. 115, pp. 3517–3521.
  57. Tedesco M., Jeyaratnam J., A new operational snow retrieval algorithm applied to historical AMSR-E brightness temperatures, Remote Sensing, 2016, Vol. 8, pp. 1037–1061.
  58. Tedesco M., Pulliainen J., Takala M., Hallikainen M., Pampaloni P., Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data, Remote Sensing of Environment, 2004, Vol. 90, pp. 76–85.
  59. Tsang L., Chen C. T., Chang A. T.C., Guo J., Ding K. H., Dense media radiative transfer theory based on quasicrystalline approximation with application to passive microwave remote sensing of snow, Radio Science, 2000, Vol. 35, No. 3, pp. 731–749.
  60. Wang J. R., Tedesco M., Identification of atmospheric influences on the estimation of snow water equivalent from AMSR-E measurements, Remote Sensing of Environment, 2007, Vol. 111, pp. 398–408.
  61. Wiesmann A., Matzler C., Microwave emission model of layered snowpacks, Remote Sensing of Environment, 1999, Vol. 70, pp. 307–316.
  62. Wiesmann A., Matzler C., Weise T., Radiometric and structural measurements of snow samples, Radio Science, 1998, Vol. 33, pp. 273–289.
  63. Zurk L., Tsang L., Shi J., Davis R., Electromagnetic scattering calculated from pair distribution function retrieved from planar snow sections, IEEE Trans. Geoscience and Remote Sensing, 1997, Vol. 35, pp. 1419–1428.