ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 222-237

Features of the development of a regional water index for monitoring the impact of acid mine water discharges on river systems

D.M. Ermakov 1, 2 , A.D. Demenev 3 , O.Yu. Meshcheriakova 3 , O.A. Berezina 3 
1 Space Research Institute RAS, Moscow, Russia
2 Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow Region, Russia
3 Perm State University, Perm, Russia
Accepted: 09.12.2021
DOI: 10.21046/2070-7401-2021-18-6-222-237
A large-scale environmental problem of the Perm Territory, characteristic of many natural and technogenic ecosystems around the world, is the discharges of acidic mine waters within the abandoned coal mining complex. Contact environmental monitoring carried out on the territory is fraught with significant logistical difficulties and does not meet the requirements of operational information support. At the same time, there is an accumulation of unique data that can be useful as complementary information for organizing more effective space monitoring of a given territory. The paper describes the next stage in the development of the proposed by the authors approach to structuring and complex analysis of a number of previously known water indices. The aim of the approach is detection (segmentation) and further analysis using satellite multichannel images of open water areas in difficult observation conditions: with small transverse dimensions of the objects of the hydrological network and a possible high concentration of contaminants, which reduces the visible contrasts between water and land. The key aspect is the focus on the development of a regional (not global) index, which potentially makes it possible to take into account and effectively use additional information: features of the enclosing landscape, patterns of seasonal variation, and lighting conditions. At the same time, from a methodological point of view, the approach is not tied to the characteristics of a specific territory and can be adapted for monitoring other similar ecosystems. The effectiveness of the approach was demonstrated by comparing examples of processing data from actual satellite observations using standard and new water indices. It is shown that the approach is promising for the implementation of satellite monitoring in the above complex observation conditions.
Keywords: water index, environmental monitoring, Sentinel-2 MSI, Kizel coal basin
Full text

References:

  1. Berezina O. A., Shikhov A. N., Abdullin R. K., The use of multi-temporal satellite images for environmental assessment in coal mining areas (by example of closed Kizel coal basin), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 144–158 (in Russian), DOI: 10.21046/2070-7401-2018-15-2-144-158.
  2. Braverman E. M., Muchnik I. B., Strukturnye metody obrabotki empiricheskikh dannykh (Structural methods for processing empirical data), Moscow: Nauka, 1983, 464 p. (in Russian).
  3. Loupian E. A., Konstantinova A. M., Balashov I. V., Kashnitskii A. V., Savorskiy V. P., Panova O. Yu., Development of a system for analyzing the state of environment in areas of large industrial facilities, tailing dumps, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 243–261 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-243-261.
  4. Maksimovich N. G., Piankov S. V., Kizelovskii ugol’nyi bassein: ekologicheskie problemy i puti resheniya (The Kizel coal basin: environmental problems and solutions), Perm: Perm University Publ., 2018, 288 p. (in Russian).
  5. Maksimovich N. G., Berezina O. A., Meshcheriakova O. Yu., Demenev A. D., Research of migration of technogenic bottom sediments with application of modern geoinformation systems, InterKarto. InterGIS. Geoinformatsionnoe obespechenie ustoichivogo razvitiya territorii (InterCarto, InterGIS, GI Support of Sustainable Development of Territories: Proc. Intern. Conf.), Moscow: Moscow University Publ., 2020, Vol. 26(2), pp. 201–211 (in Russian), DOI: 10.35595/2414-9179-2020-2-26-201-211.
  6. Ding F., Study on information extraction of water body with a new water index (NWI), Science of Surveying and Mapping, 2009, Vol. 34(4), pp. 155–157.
  7. Ermakov D. M., Meshcheriakova O. Y., Berezina O. A., Maksimovich N. G., Selecting a Set of Remote Indices for Comprehensive Monitoring of Acid Mine Drainages, Science and Global Challenges of the 21st Century — Science and Technology: Proc. Intern. Perm Forum, A. Rocha, E. Isaeva (eds.), 2021, Vol. 342, pp. 329–342, DOI: 10.1007/978-3-030-89477-1_33.
  8. Feng L., Hu C., Chen X., Cai X., Tian L., Chen L., Human induced turbidity changes in Poyang Lake between 2000 and 2010: Observations from MODIS, J. Geophysical Research, 2012, Vol. 117, Issue C7, https://doi.org/10.1029/2011JC007864.
  9. Feyisa G. L., Meilby H., Fensholt R., Proud S. R., Automated water extraction index: a new technique for surface water mapping using Landsat imagery, Remote Sensing of Environment, 2014, Vol. 140, pp. 23–35, https://doi.org/10.1016/j.rse.2013.08.029.
  10. Fisher A., Flood N., Danahe T., Comparing Landsat water index methods for automated water classification in eastern Australia, Remote Sensing of Environment, 2016, Vol. 175, pp. 167–182, DOI: 10.1016/j.rse.2015.12.055.
  11. Gao B. C., A normalized difference water index for remote sensing of vegetation liquid water from space, Imaging Spectrometry, 1995, Vol. 2480, pp. 225–236, https://doi.org/10.1016/S0034-4257(96)00067-3.
  12. Hu C., A novel ocean color index to detect floating algae in the global oceans, Remote Sensing of Environment, 2009, Vol. 113, pp. 2118–2129, https://doi.org/10.1016/j.rse.2009.05.012.
  13. Hu M., Ma R., Cao Z., Xiong J., Xue K., Remote Estimation of Trophic State Index for Inland Waters Using Landsat-8 OLI Imagery, Remote Sensing, 2021, Vol. 13, Art. No. 1988, DOI: 10.3390/rs13101988.
  14. James T., Schillaci C., Lipani A., Convolutional neural networks for water segmentation using sentinel-2 red, green, blue (RGB) composites and derived spectral indices, Intern. J. Remote Sensing, 2021, Vol. 42, No. 14, pp. 5338–5365, DOI: 10.1080/01431161.2021.1913298.
  15. Lacaux J. P., Tourre Y. M., Vignolles C., Ndione J. A., Lafaye M., Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal, Remote Sensing of Environment, 2007, Vol. 106(1), pp. 66–74, https://doi.org/10.1016/j.rse.2006.07.012.
  16. Li Y., Gong X., Guo Z., Xu K., Hu D., Zhou H., An index and approach for water extraction using Landsat – OLI data, Intern. J. Remote Sensing, 2016, Vol. 37(16), pp. 3611–3635, DOI: 10.1080/01431161.2016.1201228.
  17. McFeeters S. K., The use of the normalized difference water index (NDWI) in the delineation of open water features, Intern. J. Remote Sensing, 1996, Vol. 17, No. 7, pp. 1425–1432, https://doi.org/10.1080/01431169608948714.
  18. Meng W., Zhu S., Cao W., Su X., Cao B., Establishment of synthetical water index, Science of Surveying and Mapping, 2013, Vol. 38(4), pp. 130–133.
  19. Pyankov S. V., Maximovich N. G., Khayrulina E. A., Berezina O. A., Shikhov A. N., Abdullin R. K., Monitoring acid mine drainage’s effects on surface water in the Kizel coal basin with Sentinel-2 satellite images, Mine Water and the Environment, 2021, Vol. 40, pp. 606–621.
  20. Qu W., Lu J., Lin L. I., Xiaowen L. I., Research on automatic extraction of water bodies and wetlands on HJ satellite CCD images, Remote Sensing Information, 2011, Vol. 4, pp. 28–33.
  21. Rouse J. W., Haas R. H., Scheel J. A., Deering D. W., Monitoring Vegetation Systems in the Great Plains with ERTS, Proc. 3 rd Earth Resource Technology Satellite (ERTS) Symp., 1974, Vol. 1, pp. 48–62, https://doi.org/10.1007/s10230-021-00761-7.
  22. Shen L., Li C., Water body extraction from Landsat ETM+ imagery using adaboost algorithm, Proc. 18 th Intern. Conf. Geoinformatics, Beijing, China, 2010, pp. 1–4., DOI: 10.1109/GEOINFORMATICS.2010.5567762.
  23. Xiao Y., Zhao W., Zhu L., A study on information extraction of water body using bandl and band7 of TM imagery, Science of Surveying and Mapping, 2010, Vol. 35(5), pp. 226–227.
  24. Xu H., Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Intern. J. Remote Sensing, 2006, Vol. 27(14), pp. 3025–3033, DOI: 10.1080/01431160600589179.
  25. Yan P., Zhang Y., Zhang Y., A study on information extraction of water enhanced water index (EWI) and GIS system in semi-arid regions with the based noise remove techniques, Remote Sensing Information, 2007, Vol. 6, pp. 62–67.
  26. Zhang T., Ren H., Qin Q., Zhang C., Sun Y., Surface water extraction from Landsat 8 OLI imagery using the LBV transformation, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10(10), pp. 4417–4429, DOI: 10.1109/JSTARS.2017.2719029.