ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 200-213

Variability of the sea surface bio-optical characteristics in the region of Falkland Current and Patagonian shelf

P.A. Salyuk 1 , D.I. Glukhovets 2, 3 , N.A. Lipinskaya 1 , N. A. Moiseeva 4 , T. Ya. Churilova 4 , V.I. Ponomarev 1 , E.A. Aglova 2, 3 , V.A. Artemiev 2 , A.A. Latushkin 5 , A.Yu. Major 6 
1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
2 Shirshov Institute of Oceanology RAS, Moscow, Russia
3 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
4 A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, Sevastopol, Russia
5 Marine Hydrophysical Institute RAS, Sevastopol, Russia
6 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
Accepted: 18.11.2021
DOI: 10.21046/2070-7401-2021-18-6-200-213
The paper presents an analysis of the spatial variability and vertical distribution of bio-optical parameters of seawater in the zone of interaction of the Falkland (Malvinas) Current with the waters of the Patagonian shelf. In addition, an assessment of the influence of the chlorophyll a maximum concentration depth on the satellite remote sensing reflectance is shown. Field data were obtained during the 79th cruise of the R/V Akademik Mstislav Keldysh on January 12 and 13, 2020. Underway flow-through measurements and stations were carried out across the Falkland Current (along 45.8S). Additionally, ocean color satellite data obtained with the MODIS-Terra and OLCI Sentinel-3B radiometers and oceanographic reanalysis data were used. It is shown that in the region of interaction of the Falkland Current with the Patagonian shelf, there is an alternation of zones of upwelling and downwelling, leading to a change in the chlorophyll a maximum concentration depth, which in turn can affect the variations in the satellite remote sensing reflectance. The upper layer depth, where the position of the chlorophyll a maximum had a significant effect on the shape of the spectrum and the values of the sea remote sensing reflectance, was estimated as 14 m.
Keywords: chlorophyll a, colored dissolved organic matter, bio-optical characteristics, sea color, sea brightness coefficients, vertical profile, hydro-optical modeling, satellite data, MODIS, OLCI, Hydrolight, Falkland Current, Patagonian shelf
Full text


  1. Moiseeva N. A., Churilova T. Ya., Efimova T. V., Matorin D. N., Correction of the Chlorophyll a Fluorescence Quenching in the Sea Upper Mixed Layer: Development of the Algorithm, Physical Oceanography, 2020, Vol. 27, No. 1, pp. 60–68.
  2. Temerdashev Z. A., Pavlenko L. F., Ermakova Ya. S., Korpakova I. G., Eletskiy B. D., Extraction-fluorimetric determination of chlorophyll “a” in natural waters, Analytics and Control, 2019, Vol. 23, No. 3, pp. 323–333 (in Russian).
  3. Arkhipkin A. I., Brickle P., Laptikhovsky V. V., The use of island water dynamics by spawning red cod, Salilota australis (Pisces: Moridae) on the Patagonian Shelf (Southwest Atlantic), Fisheries Research, 2010, Vol. 105, No. 3, pp. 156–162.
  4. Arkhipkin A. I., Brickle P., Laptikhovsky V. V., Links between marine fauna and oceanic fronts on the Patagonian Shelf and Slope. Arquipelago, Life and Marine Sciences, 2013, Vol. 30, pp. 19–37.
  5. Artemiev V. A., Burenkov V. I., Woznyak S. V., Grigoriev A. V., Daretsky M., Demidov A., Kopelevich O. V., Frantsuzov O. N., Khrapko A. N., Sea-truth measurements of ocean color: field studies in the Black and Aegean Seas, Oceanology, 2000, Vol. 40, No. 2, pp. 177–182.
  6. Boss E., D’Sa E. J., Freeman S., Fry E., Mueller J. L., Pegau S., Rick A. R., Roesler C., Rottgers R., Stramski D., Twardowski M., Ronald J., Zaneveld V., Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation. IOCCG Protocol Series, Vol. 1: Inherent Optical Property Measurements and Protocols: Absorption Coefficient (v1.0), Neeley A. R., Mannino A., Dartmouth (eds.), Dartmouth, Canada: IOCCG, 2018, 78 p.
  7. Chang G., Barnard A., Zaneveld J. R. V., Optical closure in a complex coastal environment: particle effects, Applied Optics, 2007, Vol. 46. No. 31, pp. 7679–7692.
  8. Frey D. I., Krechik V. A., Fofanov D. V., Morozov E. G., Silvestrova K. P., Tarakanov R. Y., Gladyshev S. V., Piola A. R., Direct measurements of the Malvinas current velocity structure, J. Geophysical Research: Oceans, 2021, Vol. 126, No. 4, Art. No. e2020JC016727.
  9. Garcia V. M. T., Garcia C. A. E., Mata M. M., Pollery R. C., Piola A. R., Signorini S. R., McClain C. R., Iglesias-Rodriguez D. M., Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring, Deep Sea Research Part I: Oceanographic Research Papers, 2008, Vol. 55, No. 9, pp. 1150–1166.
  10. Hieronymi M., Müller D., Doerffer R., The OLCI Neural Network Swarm (ONNS): a bio-geo-optical algorithm for open ocean and coastal waters, Frontiers in Marine Science, 2017, Vol. 4, Art. No. 140.
  11. Jeffrey S. W., Humphrey G. F., New spectrometric equations for determining chlorophylls a, b, c1, c2 in algae, phytoplankton and higher plants, Biochemie und Physiologie der Pflanzen, 1975, Vol. 167, pp. 191–194.
  12. Kishino M., Takahashi N., Okami N., Ichimura S., Estimation of the spectral absorption coefficients of phytoplankton in the sea, Bull. Marine Science, 1985, Vol. 37, pp. 634–642.
  13. Matano R. P., Palma E. D., The upwelling of downwelling currents, J. Physical Oceanography, 2008, Vol. 38, pp. 2482–2500.
  14. Mobley C. D., Fast light calculations for ocean ecosystem and inverse models, Optics Express, 2011, Vol. 19, No. 20, pp. 18927–18944.
  15. Mueller J., Morel A., Frouin R., Davis C., Arnone R., Carder K., Lee Z. P., Steward R. G., Hooker S., Mobley C., Mclean S., Holben B., Miller M., Pietras C., Knobelspiesse K., Fargion G., Porter J., Voss K., Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Radiometric Measurements and Data Analysis Protocols, 2003, Vol. 3, Issue 4, 78 p.
  16. Nagornyi I. G., Salyuk P. A., Maior A. Y., Doroshenkov I. M., A mobile complex for on-line studying water areas and surface atmosphere, Instruments and Experimental Techniques, 2014, Vol. 57, No 1, pp. 68–71.
  17. Nelson N., Siegel D., The global distribution and dynamics of chromophoric dissolved organic matter, Annu. Review of Marine Science, 2013, No. 5, pp. 447–476.
  18. O’Reilly J. E., Werdell P. J., Chlorophyll algorithms for ocean color sensors — OC4, OC5 and OC6, Remote Sensing of Environment, 2019, Vol. 229, pp. 32–47.
  19. O’Reilly J. E., Maritorena S., Mitchell B. G., Siegel D. A., Carder K. L., Garver S. A., Kahru M., McClain C., Ocean color chlorophyll algorithms for SeaWiFS, J. Geophysical Research: Oceans, 1998, Vol. 103, No. C11, pp. 24937–24953.
  20. Palma E. D., Matano R. P., Piola A. R., A numerical study of the Southwestern Atlantic Shelf circulation: barotropic response to tidal and wind forcing, J. Geophysical Research, 2004, Vol. 109, Art. NO. C08014, 17 p., DOI: 10.1029/2004JC002315.
  21. Peterson R. G., Whitworth III T., The Subantarctic and Polar fronts in relation to deep water masses through the Southwestern Atlantic, J. Geophysical Research, 1989, Vol. 94, pp. 10817–10838.
  22. Rio M. H., Mulet S., Picot N., Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents, Geophysical Research Letters, 2014, Vol. 41, No. 24, pp. 8918–8925.
  23. Rivas A. L., Dogliotti A. I., Gagliardini D. A., Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf, Continental Shelf Research, 2006, Vol. 26, No. 6, pp. 703–720.
  24. Romero S. I., Piola A. R., Charo M., Garcia C. A.E., Chlorophyll-a variability off Patagonia based on SeaWiFS data, J. Geophysical Research, 2006, Vol. 111, Art. No. C05021, 11 p., DOI: 10.1029/2005JC003244.
  25. Sabatini M., Reta R., Matano R., Circulation and zooplankton biomass distribution over the southern Patagonian shelf during late summer, Continental Shelf Research, 2004, Vol. 24, No 12, pp. 1359–1373.
  26. Werdell P., Franz B., Bailey S., Feldman G., Boss E., Brando V., Dowell M., Hirata T., Lavender S., Lee Z., Loisel H., Maritorena S., Mélin F., Moore T., Smyth T., Antoine D., Devred E., d’Andon O., Mangin A., Generalized ocean color inversion model for retrieving marine inherent optical properties, Applied Optics, 2013, Vol. 52, No. 10, pp. 2019–2037.
  27. Wojtasiewicz B., Hardman-Mountford N., Antoine D., Dufois F., Slawinski D., Trull T., Use of bio-optical profiling float data in validation of ocean colour satellite products in a remote ocean region, Remote Sensing of Environment, 2018, Vol. 209, pp. 275–290.