ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 253-264

Analysis of methane variations on the Arctic coast in the summer-autumn period

V.S. Starodubtsev 1 , V.S. Solovyev 1, 2 
1 Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia
2 M.K. Ammosov North-Eastern Federal University, Yakutsk, Russia
Accepted: 21.10.2021
DOI: 10.21046/2070-7401-2021-18-6-253-264
In this study, methane concentration variations on the Arctic coast were analyzed using data from three arctic stations: Barrow (USA), Tiksi (Russia), Alert (Canada), and remote sensing data (AIRS/Aqua). According to the data from ground-based stations, methane concentration experienced a 6–7 % increase during 1980–2019. A similar increase (5–6 %) is also reported by AIRS data for a shorter period (2003–2019). Analysis of seasonal variation revealed short-term bursts in methane concentration, which were often observed during the off-season (summer – autumn) at Barrow (June – November) and Tiksi (June – September) stations, while no similar events were found at Alert. It is assumed that the probable cause of such bursts is wind dynamics at observation points. Additionally, we used AIRS data to analyze the spatial distribution of methane concentration at 400 hPa pressure level during summer – autumn and winter – spring periods. It is shown that during the summer – autumn period higher methane concentrations are observed over land, while during the winter – spring period there is no significant difference between the methane concentration over land and water surface.
Keywords: methane, Arctic, remote sensing, AIRS, HYSPLIT
Full text

References:

  1. Arshinov M. Yu., Belan B. D., Davidov D. K., Inouye G., Maksutov Sh., Machida T., Fofonov A. V., Vertical distribution of greenhouse gases over Western Siberia from long-term measurements data, Optika atmosfery i okeana, 2009, Vol. 22, No. 5, pp. 457–464 (in Russian).
  2. Bazhin N. M., Methane in the atmosphere, Sorosovskii obrazovatel’nyi zhurnal, 2000, Vol. 6, No. 3, pp. 52–57 (in Russian).
  3. Bazhin N. M., Metan v okruzhaushchei srede: analiticheskii obzor (Methane in the environment: an analytical review), Novosibirsk, GPTNB SO RAN, 2010, Ser. Ekologiya, Issue 93, 56 p. (in Russian).
  4. Nagurnyy A. P., Makshtas A. P., Sokolov V. T., The results of measuring the methane concentration in the near-ice layer of the atmosphere of the drifting ice station SP-39 (2011–2012) increased background of methane concentration, Problemy Arktiki i Antarktiki, 2013, No. 4(98), pp. 5–13 (in Russian).
  5. Obzhirov A. I., Telegin Yu. A., Boloban A. V., Methane fluxes and gas hydrates in the Okhotsk Sea, Podvodnye issledovaniya i robototekhnika, 2015, No. 1(19), pp. 56–62 (in Russian).
  6. Reshetnikov A. I., Ivakhov V. M., The Results of continuous observations of methane concentration in Tiksi (comparison with the data of ship observations on the Laptev Sea shelf), Trudy Glavnoi geofizicheskoi observatorii im. A. I. Voeikova, V. M. Kattsov, V. P. Meleshko (eds.), Saint Petersburg: Gidrometeoizdat, 2012, pp. 257–269 (in Russian).
  7. Starodubtsev V. S., Solovyev V. S., Features variations of methane concentration in the summer-autumn period at Arctic station Barrow (Alaska) by terrestrial and satellite data, Vestnik Severo-Vostochnogo federal’nogo universiteta im. M. K. Ammosova, 2020, No. 1(75), pp. 40–50 (in Russian).
  8. Yurganov L. N., Leifer A., Estimates of methane emission rates from some Arctic and sub-Arctic areas based on orbital interferometer IASI data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 173–183 (in Russian), DOI: 10.21046/2070-7401-2016-13-3-173-183.
  9. Yurganov L. N., Leifer A., Lund Myhre C., Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 107–119 (in Russian), DOI: 10.21046/2070-7401-2016-13-2-107-119.
  10. Baijun T., Manning E., Fetzer E., Olsen E., Wong S., Susskind J., Iredell L., AIRS/AMSU/HSB Version 6 Level 3 Product User Guide, Pasadena, CA: California Inst. Technology, 2017, 40 p.
  11. Bousquet P., Ciais P., Miller J. B., Dlugocencky E. J., Hauglustaine D. A., Prigent C., Van der Werf G. R., Peylin P., Brunke E.-G., Carouge C., Langenfelds R. L., Lathiere J., Papa F., Ramonet M., Schmidt M., Steele L. P., Tyler S. C., White J., Contribution of anthropogenic and natural sources to atmospheric methane variability, Nature, 2006, Vol. 443, pp. 439–443, DOI: 10.1038/nature05132.
  12. Climate Change 1994: Radiative Forcing of Climate Change and An Evaluation of the IPCC IS92 Emission Scenarios, Reports of Working Groups I and III of the Intergovernmental Panel on Climate Change, forming part of the IPCC Special Report to the first session Conf. Parties to the UN Framework Convention on Climate Change, IPCC, Houghton J. T., Meira Filho L. G., Bruce J., Hoesung L., Callander B. A., Haites E., Harris N., Maskell K. (eds.), Cambridge, UK: Cambridge University Press, UK, 1994, 339 p.
  13. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M., Miller H. L. (eds.), Cambridge, UK; New York, USA: Cambridge University Press, 2007, 996 p.
  14. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. (eds.), Cambridge, UK; New York, USA: Cambridge University Press, 2013, 1535 p.
  15. Ehhalt D. H., The atmospheric cycle of methane, Tellus, 1974, Vol. 26, pp. 58–70, DOI: 10.3402/tellusa.v26i1-2.9737.
  16. Ehhalt D. H., Schmidt U., Sources and sinks of atmospheric methane, Pure and Applied Geophysics, 1978, Vol. 116, pp. 452–464, DOI: 10.1007/BF01636899.
  17. Fiore A. M., Horowitz L. W., Dlugokencky E. J., West J. J., Impact of meteorology and emissions on methane trends, 1990–2004, Geophysical Research Letters, 2006, Vol. 33, Art. No. L12809, 4 p., DOI: 10.1029/2006GL026199.
  18. Harvey L. D. D., A guide to global warming potentials (GWPs), Energy Policy, 1993, Vol. 21, pp. 24–34, DOI: 10.1016/0301-4215(93)90205-T.
  19. Khalil M. A. K., Rasmussen R. A., Sources, sinks, and seasonal cycles of atmospheric methane, J. Geophysical Research: Oceans, 1983, Vol. 88, Issue C9, pp. 5131–5144, DOI: 10.1029/JC088iC09p05131.
  20. Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J. G., Dlugokencky E. J., Bergamaschi P., Bergmann D., Blake D. R., Bruhwiler L., Cameron-Smith P., Castaldi S., Chevallier F., Feng L., Fraser P. J., Krummel P. B., Lamarque J.-F., Langenfelds R. L., Le Quere C., Naik V., O’Doherty S., Palmer P. I., Pison I., Plummer D., Poulter B., Prinn R. G., Rigby M., Ringeval B., Santini M., Schmidt M., Shindell D. T., Simpson I. J., Spanhi R., Paul Steele L., Strode S. A., Sudo K., Szopa S., van der Werf G. R., Voulgarakis A., van Welle M., Williams J. E., Zeng G., Three decades of global methane sources and sinks, Nature Geoscience, 2013, Vol. 6, pp. 813–823, DOI: 10.1038/NGEO1955.
  21. Levy II H., Normal atmosphere: large radical and formaldehyde concentrations predicted, Science, 1971, Vol. 173, Issue 3992, pp. 141–143, DOI: 10.1126/science.173.3992.141.
  22. Overland J. E., Hanna E., Hassen-Bauer I., Kim S.-J., Walsh J. E., Wang M., Bhatt U. S., Thoman R. L., Ballinger T. J., Surface Air Temperature, Arctic Report Card 2019, J. Ritcher-Menge, M. L. Druckenmiller, M. Jeffries (eds.), 2019, pp. 5–10, available at: http://www.arctic.noaa.gov/Report-Card.
  23. Rigby M., Prinn R. G., Fraser P. J., Simmonds P. G., Langendfelds R. L., Huang J., Cunnold D. M., Steele L. P., Krummel P. B., Weiss R. F., O’Doherty S., Salameh P. K., Wang H. J., Harth C. M., Mühle J., Porter L. W., Renewed growth of atmospheric methane, Geophysical Research Letters, 2008, Vol. 35, Issue 22, Art. No. L22805, 6 p, DOI: 10.1029/2008GL036037.
  24. Saunois M., Stavert A. R., Poulter B., Bousquet P., Canadell J. G., Jackson R. B., Raymond P. A., Dlugokencky E. J., Houweling S., Patra P. K., Ciais P., Arora V. K., Bastviken D., Bergamaschi P., Blake D. R., Brailsford G., Bruhwiler L., Carlson K. M., Carrol M., Castaldi S., Chandra N., Crevoisier C., Crill P. M., Covey K., Curry C. L., Etiope G., Frankenberg C., Gedney N., Hegglin L., Höglund-Isaksson G., Hugelius M., Ishizawa A., Ito G., Janssens-Maenhout K. M., Jensen M. I., Joos F., Kleinen T., Krummel P. B., Langenfelds R. L., Laruelle G. G., Liu L., Machida To., Maksyutov S., McDonald K. C., McNorton J., Miller P. A., Melton J. R., Morino I., Müller J., Murgia-Flores Fa., Naik V., Niwa Y., Noce S., O’Doherty S., Parker R. J., Peng C., Peng S., Peters G. P., Prigent C., Prinn R., Ramonet M., Regnier P., Riley W. J., Rosentreter J. A., Segers A., Simpson I. J., Shi H., Smith S. J., Steele L. P., Thornton B. F., Tian H., Tohjima Y., Tubiello F. N., Tsuruta A., Viovy N., Voulgarakis A., Weber T. S., van Weele M., van der Werf G. R., Weiss R. F., Worthy D., Wunch D., Yin Y., Yoshida Y., Zhang W., Zhang Z., Zhao Y., Zheng B., Zhu Q., Zhu Q., Zhuang Q., The global methane budget 2000-2017, Earth System Science Data, 2020, Vol. 12, pp. 1561–1623, DOI: 10.5194/essd-12-1561-2020.
  25. Schuur Edward A. G., Bockheim J., Canadell J. G., Euskirchen E., Field C. B., Goryachkin S. V., Hagemann S., Kuhry P., Lafleur P. M., Lee H., Mazhitova G., Nelson F. E., Rinke A., Romanovsky V. E., Shiklomanov N., Tarnocai C., Venevsky S., Vogel J. G., Zimov S. A., Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle, BioScience, 2008, Vol. 58, No. 8, pp. 701–714, DOI: 10.1641/B580807.
  26. Thompson A. M., Chappellaz J. A., Fung I. Y., Kucsera T. L., The atmospheric CH4 increase since the Last Glacial Maximum, Tellus B: Chemical and Physical Meteorology, 1993, Vol. 45, Issue 3, pp. 242–257, DOI: 10.3402/tellusb.v45i3.15727.
  27. Topp E., Pattey E., Soils as sources and sinks for atmospheric methane, Canadian J. Soil Science, 1997, Vol. 77, pp. 167–177, DOI: 10.4141/S96-107.
  28. Xiong X., Barnet C., Maddy E., Sweeney C., Liu X., Zhou L., Goldberg M., Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS), J. Geophysical Research, 2008, Vol. 113, pp. 1–14, DOI: 10.1029/2007JG000500.
  29. Xiong X., Han Y., Liu Q., Weng F., Comparison of atmospheric methane retrievals from AIRS and IASI, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, No. 7, pp. 3297–3303, DOI: 10.1109/JSTARS.2016.2588279.
  30. Zona D., Gioli B., Commane R., Lindaas J., Wofsy S. C., Miller C. E., Dinardo S. J., Dengel S., Sweeney C., Karion A., Chang R. Y.-W., Henderson J. M., Murphy P. C., Goodrich J. P., Moreaux V., Liljedahl A., Watts J. D., Kimball J. S., Lipson D. A., Oechel W. C., Cold season emissions dominate the Arctic tundra methane budget, Proc. National Academy of Sciences, 2016, Vol. 113, No. 1, pp. 40–45, DOI: 10.1073/pnas.1516017113.