ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 185-199

Interannual variation of microwave radiation of the Gulf of Ob during the freezing season and relationship to hydrological and climate changes in the region

V.V. Tikhonov 1, 2 , A.N. Romanov 2 , I.V. Khvostov 2 , T.A. Alekseeva 3, 1 , A.I. Sinitskiy 4 , M.V. Tikhonova 5 , E.A. Sharkov 1 , N.Yu. Komarova 1 
1 Space Research Institute RAS, Moscow, Russia
2 Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
3 Arctic and Antarctic Research Institute, Saint Petersburg, Russia
4 LLP GEOINGSERVICE, Moscow, Russia
5 Russian State Agrarian University — Moscow Timiryazev Agricultural Academy, Moscow, Russia
Accepted: 02.11.2021
DOI: 10.21046/2070-7401-2021-18-6-185-199
The article presents an analysis of seasonal and interannual variations of brightness temperature in different areas of the Gulf of Ob during the freezing season obtained from SMOS (Soil Moisture and Ocean Salinity) satellite data. The studies showed that in the southern part of the Gulf of Ob, the seasonal and interannual brightness temperature dynamics are similar to those of freshwater lakes. However, closer to the Kara Sea these dynamics are broken and in the northern part of the bay become similar to the brightness temperature dynamics of the central Kara Sea. Changes in the seasonal brightness temperature dynamics in different areas of the Gulf of Ob occur during the freezing period. They are explained by an increase in the salinity of water under ice. The studies show that during winter seasons, the mixing area of fresh and salt waters (transition zone) can shift far to the south of the Gulf of Ob. The winter shift of the transition zone is compared with climate changes in the region and in the Ob River basin that determine the river runoff and the state of permafrost. The revealed patterns of seasonal and interannual variations of brightness temperature in different areas of the Gulf of Ob and the associated phases of ice cover can be used to assess the hydrological regime in large estuaries of the Arctic in winter as well as climate changes in the adjacent areas from satellite microwave radiometry.
Keywords: satellite microwave radiometry, brightness temperature, estuary, ice cover, water mixing, hydrological regime, water salinity
Full text

References:

  1. Andreev O. M., Drabenko D. V., Vinogradov R. A., Orlova E. U., Influence of climate warming on the strength characteristics of ice in the Ob Bay, Led i Sneg, 2009, Vol. 59, No. 4, pp. 539–545 (in Russian).
  2. Bulavina A. S., Climatic factors of the Ob River runoff formation, Nauka yuga Rossii, 2020, Vol. 16, No. 1, pp. 45–54 (in Russian).
  3. Vasil’ev A. N., Interaction of river and sea waters in the Ob estuary, Trudy Arkticheskogo i antarkticheskogo nauchno-issledovatel’skogo instituta, 1976, Vol. 314, pp. 183–196 (in Russian).
  4. Voynov G. N., Nalimov Yu. V., Piskun A. A., Stanovoy V. V., Usankina G. E., Osnovnye cherty gidrologicheskogo rezhima Obskoi i Tazovskoi gub (led, urovni, struktura vod) (The main features of the hydrological regime of the Ob and Taz bays (ice, levels, water structure)), Saint Petersburg: Nestor-History, 2017, 192 p. (in Russian).
  5. Dolgopolova E. N., The role of permafrost in the formation of the hydrological and morphological regime of river mouths in the Arctic Ocean watershed area, Arktika: ekologiya i ekonomika, 2018, Vol. 32, No. 4, pp. 55–70 (in Russian).
  6. Zatsepin A. G., Zavialov P. O., Kremenetskiy V. V., Poyarkov S. G., Soloviev D. M., The Upper Desalinated Layer in the Kara Sea, Okeanologiya, 2010, Vol. 50, No. 5, pp. 657–667.
  7. Ilyin G. V., Hydrological conditions of the Ob bay as new area of maritime wildlife management in the Russian Arctic, Nauka yuga Rossii, 2018, Vol. 14, No. 2, pp. 20–32 (in Russian).
  8. Lapin S. A., Hydrological Characterization of the Ob’ Inlet in the Summer and Autumn Seasons, Oceanology, 2011, Vol. 51, No. 6, pp. 925–934.
  9. Lapin S. A., Prostranstvenno-vremennaya izmenchivost’ gidrologo-gidrokhimicheskikh kharakteristik Obskoi guby kak osnova otsenki ee bioproduktivnosti: Diss. kand. geogr. nauk (Spatial and temporal variability of the hydro-hydrochemical characteristics of the Ob Bay as a basis for assessing its bioproductivity, Cand. geogr. sci. thesis), Moscow, 2012, 128 p. (in Russian).
  10. Polukhin A. A., Makkaveev P. N., Features of the Continental Runoff Distribution over the Kara Sea, Oceanology, 2017, Vol. 57, No. 1, pp. 19–30.
  11. Romanov A. N., Khvostov I. V., Kovalevskaya N. M., Sinitskiy A. I., Kolesnikov R. A., First results of cosmic microwave monitoring of permafrost and tundra vegetation in the territory of Gydan Peninsula, Nauchnyi vestnik Yamalo-Nenetskogo avtonomnogo okruga, 2016, Vol. 93, No. 4, pp. 68–76 (in Russian).
  12. Romanov A. N., Khvostov I. V., Ulanov P. N., Kovalevskaya N. M., Kirillov V. V., Plutalova T. G., Kobelev V. O., Pechkin A. S., Sinitskii A. I., Sysoeva T. G., Khvorova L. A., Kosmicheskii monitoring arkticheskikh i subarkticheskikh territorii Yamalo-Nenetskogo avtonomnogo okruga (Space Monitoring of the Arctic and Subarctic Territories in the Yamalo-Nenets Autonomous Okrug), Barnaul: “Pyat’ plus”, 2018, 120 p. (in Russian).
  13. Stanovoy V. V., Variability of thermohaline water structure in the Kara Sea estuaries, Trudy Arkticheskogo i antarkticheskogo nauchno-issledovatel’skogo instituta, 2008, Vol. 448, pp. 103–30 (in Russian).
  14. Tikhonov V. V., Khvostov I. V., Romanov A. N., Sharkov E. A., Analysis of changes in the ice cover of freshwater lakes by SMOS data, Izvestiya, Atmospheric and Oceanic Physics, 2018, Vol. 54, No. 9, pp. 1135–1140.
  15. Tikhonov V. V., Khvostov I. V., Romanov A. N., Sharkov E. A., Boyarskii D. A., Komarova N. Yu., Sinitskiy A. I., Features of the Intrinsic L-Band Radiation of the Gulf of Ob during the Freeze-Up Period, Izvestiya, Atmospheric and Oceanic Physics, 2020, Vol. 56, No. 9, pp. 936–949.
  16. Sharkov E. A., Passive Microwave Remote Sensing of the Earth: Physical Foundations, Berlin: Springer/PRAXIS, 2003, 612 p.
  17. Barry R. G., Gan T. Y., The Global Cryosphere. Past, Present, and Future, Cambridge: Cambridge University Press, 2011, 472 p.
  18. Gutierrez A., Castro R., Vieira P., SMOS L1 Processor L1c Data Processing Model, Lisboa: DEIMOS Engenharia, 2014, available at: https://earth.esa.int/documents/10174/1854456/SMOS_L1c-Data-Processing-Models.
  19. Karlsson J. M., Jaramillo F., Destouni G., Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas, J. Hydrology, 2015, Vol. 529, Part 1, pp. 134–145.
  20. Kokelj S. V., Kokoszka J., van der Sluijs J., Rudy A. C. A., Tunnicliffe J., Shakil S., Tank S. E., Zolkos S., Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks, The Cryosphere, 2021, Vol. 15, No. 7, pp. 3059–3081.
  21. Sahr K., White D., Kimerling A. J., Geodesic Discrete Global Grid System, Cartography and Geographic Information Science, 2003, Vol. 30, No. 2, pp. 121–134.
  22. Tedesco M., Remote Sensing of the Cryosphere, Oxford: John Wiley and Sons, 2015, 404 p.
  23. Tikhonov V. V., Boyarskii D. A., Sharkov E. A., Raev M. D., Repina I. A., Ivanov V. V., Alexeeva T. A., Komarova N. Yu., Microwave Model of Radiation from the Multilayer “Ocean-atmosphere” System for Remote Sensing Studies of the Polar Regions, Progress in Electromagnetics Research B, 2014, Vol. 59, pp. 123–133.
  24. Tikhonov V., Khvostov I., Romanov A., Sharkov E., Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data, The Cryosphere, 2018, Vol. 12, No. 8, pp. 2727–2740.
  25. Ulaby F. T., Long D. G., Microwave Radar and Radiometric Remote Sensing, University of Michigan Press, 2014, 984 p.