ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 177-184

Study of the tortuosity of thermokarst lake coastlines in the eastern Russian Arctic using Kanopus-V high-resolution images

Yu.M. Polishchuk 1 , I.N. Muratov 1 , O.A. Baisalyamova 1 , P.A. Nabiullina 1 
1 Ugra Research Institute of Information Technologies, Khanty-Mansiysk, Russia
Accepted: 14.10.2021
DOI: 10.21046/2070-7401-2021-18-6-177-184
The article is devoted to the issues of remote sensing of the tortuosity properties of thermokarst lake coastlines in four Arctic territories, which are relatively homogeneous areas in terms of properties, hereinafter called ecoregions. For the research, 31 test sites of approximately equal area were selected in different ecoregions located in Yakutia, Chukotka and Kamchatka. At each test site, using the Kanopus-V images, from hundreds to several thousand lakes with a minimum area of 40 m2 were determined. On the basis of measurements of areas and perimeters of the lakes in each ecoregion, histograms of the lake coastlines tortuosity degree distribution were constructed, showing a similar character in different territories. It is shown that the tortuosity degree of lake coastlines varies in a fairly wide interval of values from one to several tens, although the range of changes in their average values in all ecoregions is relatively small and ranges from 3 to 5. The dependence of the tortuosity degree on the lake size has been studied. It was found that this value, on average, shows a positive trend with an increase in the area of the lakes from 50 to 10,000 m2, and for large lakes it fluctuates within small limits. The results obtained can be taken into account when estimating the errors in measuring the lake areas in the investigated territories using the Kanopus-V satellite images.
Keywords: permafrost, space images, arctic tundra, thermokarst lakes, tortuosity of lake coastlines, histograms of the lake coastlines tortuosity degree distribution, ecoregions
Full text


  1. Berlyant A. M., Kartograficheskii metod issledovaniya (Cartographic method of research), Moscow: Izd. Moskovskogo universiteta, 1978, 257 p. (in Russian).
  2. Kornienko S. G., Assessment accuracy of measurement of the water body area in the permafrost using different spatial resolution satellite imagery, Kriosfera Zemli, 2014, Vol. 18, No. 4, pp. 86–93 (in  Russian).
  3. Kotlyakov V. M., Khain V. E., Gutsulyak V. N., Danilov A. I., Arktika (Arctic), Bol’shaya rossiiskaya entsiklopediya (The Great Russian Encyclopedia. Electronic version) (in Russian), available at: (accessed 24.05.2021).
  4. Muratov I. N., Sadykov A. O., Polishchuk Yu. M., Remote study of thermokarst lakes of the Malozemelskaya tundra, Mezhdunarodnyi simpozium Moskovskogo nauchno-tekhicheskogo obshchestva radiotekhniki, elektroniki i svyazi im. A. S. Popova. Ser.: “Nauchnye Mezhdunarodnye simpoziumy. Problemy ekoinformatiki” (Proc. Intern. Symp. Moscow Scientific and Technical Society of Radio Engineering, Electronics and Communications named after A. S. Popov. Ser. “Scientific Intern. Symp. Problems of Ecoinformatics”), F. A. Mkrtchyan (ed.), 2020, Issue 14, pp. 190–194 (in Russian).
  5. Polishchuk Yu. M., Polishchuk V. Yu., Use of geo-simulation for forecasting the changes in sizes of thermokarst lakes in northern Western Siberia, Kriosfera Zemli, 2016, Vol. 20, No. 2, pp. 32–40 (in Russian).
  6. Polishchuk Yu. M., Muratov I. N., Polishchuk V. Yu., Study of the tortuosity of the coastal boundaries of thermokarst lakes of Western Siberia using high-resolution images of Kanopus-V, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 130–137 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-130-137.
  7. Polishchuk Yu. M., Muratov I. N., Baysalamova O. A., Study of tortuosity of the coastal boundaries of thermokarst lakes of Bolshezemelskaya tundra using images of Kanopus-V images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 95–101 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-95-101.
  8. Crapper P. F., Errors incurred in estimating an area of uniform land cover using Landsat, Photogrammetric Engineering and Remote Sensing, 1980, Vol. 46, No. 10, pp. 1295–1301.
  9. Kupriyanov M., Kochergin G., Muratov I., Polishchuk Yu., Accuracy Analysis of Remote Measurement of Thermokarst Lakes Parameters for Field Dynamics Modeling Problems, Proc. 8th Scientific Conf. Information Technologies for Intelligent Decision Making Support (ITIDS 2020), Ser. Advances of Social Science, Education and Humanities Research, Atlantis Press, 2020, Vol. 174, pp. 237–241.
  10. Olson D. M., Dinerstein E., Wikramanayake E. D., Burgess N. D., Powell G. V., Underwood E. C., D’amico J. A., Itoua I., Strand H. E., Morrison J. C., Loucks C. J., Allnutt T. F., Ricketts T. H., Kura Y., Lamoreux J. F., Wettengel W. W., Hedao P., Kassem K. R., Terrestrial Ecoregions of the World: A New Map of Life on Earth, BioScience, 2001, Vol. 51, Issue 11, pp. 933–938, DOI: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.
  11. Polishchuk V. Y., Polishchuk Y. M., Modeling of thermokarst lake dynamics in West-Siberian permafrost, Ch. 6, In: Permafrost: Distribution, Composition and Impacts on Infrastructure and Ecosystems, O. Pokrovsky (ed.), New York: Nova Science Publishers, 2014, pp. 205–234, DOI:10.3897/issn2541-8416.2019.19.1.1.