ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 265-272

Analysis of ground-based spectroscopic measurements of CO2 in Peterhof

A.A. Nikitenko 1 , G.M. Nerobelov 1 , Yu.M. Timofeev 1 , A.V. Poberovsky 1 
1 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 03.12.2021
DOI: 10.21046/2070-7401-2021-18-6-265-272
Regular monitoring of CO2 anthropogenic emissions by megacities of our planet is very important since large cities contribute up to ~70 % of total anthropogenic CO2 emissions on Earth. In the work, the possibilities of quantitative assessment of Saint Petersburg anthropogenic contribution to CO2 emissions are studied by the analysis of spectroscopic measurements in Peterhof by stationary IR Furrier-spectrometer Bruker 125HR in 2018–2019. Analysis of the measurements of CO2 content during different wind directions has demonstrated that the Saint Petersburg anthropogenic contribution constituted 1.5–5.3 ppm in terms of average mixing ratio in dry atmosphere. The estimates obtained fit well with independent and highly accurate data on anthropogenic contribution calculated in the framework of EMME campaign in March – April 2019. To implement regular measurements of CO2 total content in Peterhof in some practical applications for emission estimates, the accuracy of the anthropogenic contribution estimation has to be increased significantly. This can be achieved due to additional differential measurements of CO2 total content using a stationary instrument and mobile Furrier-spectrometer Bruker EM27/SUN.
Keywords: CO2 anthropogenic emissions, monitoring, CO2 variation, ground-based spectroscopic measurements, validation, satellite measurements, differential method
Full text


  1. Rakitin A. V., Poberovskii A. V., Timofeev Yu. M., Makarova M. V., Conway T. J., Variations in the column-average dry-air mole fractions of CO2 in the vicinity of St. Petersburg, Izvestiya. Atmospheric and Oceanic Physics, 2013, Vol. 49, No. 3, pp. 271–275.
  2. Timofeev Y. M., Berezin I. A., Virolainen Y. A., Makarova M. V., Polyakov A. V., Poberovsky A. V., Filippov N. N., Foka S. Ch., Spatial-temporal CO2 variations near St. Petersburg based on satellite and ground-based measurements, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 1, pp. 59–64.
  3. Timofeev Yu. M., Nerobelov G. M., Virolainen Ya. A., Poberovskii A. V., Foka S. Ch. (2020a), Estimates of CO2 anthropogenic emissions from Saint-Petersburg megacity, Doklady RAN, Nauki o Zemle, 2020, Vol. 494, No. 1, pp. 97–100 (in Russian), DOI: 10.31857/S2686739720090182.
  4. Timofeev Yu. M., Filippov N. N., Poberovskii A. V. (2020b), Analysis of the information content and vertical resolution of the ground-based spectroscopic IR method for the CO2 vertical structure retrieval, Optika atmosfery i okeana, 2020, Vol. 33, No. 11, pp. 836–841 (in Russian), DOI: 10.15372/AOO20201102.
  5. Timofeev Y. M., Nerobelov G. M., Poberovskii A. V., Filippov N. N., Determination both tropospheric and stratospheric CO2 contents using a ground-based ir spectroscopic method, Izvestiya. Atmospheric and Oceanic Physics, 2021, Vol. 57, No. 3, pp. 286–296.
  6. Foka S. Ch., Makarova M. V., Poberovsky A. V., Timofeev Yu. M., Temporal variations in CO2, CH4 and CO concentrations in Saint Petersburg suburb (Peterhof), Optika atmosfery i okeana, 2019, Vol. 32, No. 10, pp. 860–866 (in Russian), DOI: 10.15372/AOO20191010.
  7. A Guidebook on the Use of Satellite Greenhouse Gases Observation Data to Evaluate and Improve Greenhouse Gas Emission Inventories, 1st ed., Matsunaga T., Maksyutov S. (eds.), Satellite Observation Center, National Institute for Environmental Studies, Japan, 2018, 129 p.
  8. Enting I. G., Inverse Problems in Atmospheric Constituent Transport, Cambridge, UK: Cambridge University Press, 2002, 392 p.,
  9. Hase F., Hannigan J. W., Coffey M. T., Goldman A., Hopfner M., Jones N. B., Rinsland C. P., Wood S. W., Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements, J. Quantitative Spectroscopy and Radiative Transfer, 2004, Vol. 87, pp. 25–52, DOI: 10.1016/j.jqsrt.2003.12.008.
  10. Ionov D. V., Makarova M. V., Hase F., Foka S. C., Kostsov V. S., Alberti C., Blumenstock T., Warneke T., Virolainen Y. A., The CO2 integral emission by the megacity of St. Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling, Atmospheric Chemistry and Physics, 2021, Vol. 21, Issue 14, pp. 10939–10963,
  11. Kort E. A., Frankenberg C., Miller C. E., Oda T., Space-based observations of megacity carbon dioxide, Geophysical Research Letters, 2012, Vol. 39, Art. No. L17806, DOI: 10.1029/2012GL052738.
  12. Makarova M. V., Alberti C., Ionov D. V., Hase F., Foka S. C., Blumenstock T., Warneke T., Virolainen Ya. A., Kostsov V. S., Frey M., Poberovskii A. V., Timofeyev Yu. M., Paramonova N. N., Volkova K. A., Zaitsev N. A., Biryukov E. Y., Osipov S. I., Makarov B. K., Polyakov A. V., Ivakhov V. M., Imhasin H. Kh., Mikhailov E. F., Emission Monitoring Mobile Experiment (EMME): an overview and first results of the St. Petersburg megacity campaign-2019, Atmospheric Measurement Techniques, 2021, Vol. 14, pp. 1047–1073,
  13. Nassar R., Hill T. G., McLinden C. A., Wunch D., Jones D. B. A., Crisp D., Quantifying CO2 emissions from individual power plants from space, Geophysical Research Letters, 2017, Vol. 44, Issue 19, pp. 10045–10053,
  14. Oda T., Maksyutov S., A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights, Atmospheric Chemistry and Physics, 2011, Vol. 11, pp. 543–556,
  15. Shekhar A., Chen J., Paetzold J. C., Dietrich F., Zhao X., Bhattacharjee S., Ruisinger V., Wofsy S. C., Anthropogenic CO2 emissions assessment of Nile Delta using XCO2 and SIF data from OCO-2 satellite, Environmental Research Letters, 2020, Vol. 15, Issue 9, DOI: 10.1088/1748-9326/ab9cfe.
  16. Stein A. F., Draxler R. R., Rolph G. D., Stunder B. J. B., Cohen M. D., Ngan F., NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bull. American Meteorological Society, 2015, Vol. 96, Issue 12, pp. 2059–2077, DOI: 10.1175/BAMS-D-14-00110.1.
  17. Timofeyev Y., Virolainen Y., Makarova M., Poberovsky A., Polyakov A., Ionov D., Osipov S., Imhasin H., Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia), J. Molecular Spectroscopy, 2016, Vol. 323, pp. 2–14, DOI: 10.1016/j.jms.2015.12.007.
  18. Virolainen Ya. A., Methodical Aspects of the Determination of Carbon Dioxide in Atmosphere Using FTIR Spectroscopy, J. Applied Spectroscopy, 2018, Vol. 85, Issue 3, pp. 462–469,
  19. Virolainen Y. A., Nikitenko A. A., Timofeyev Y. M., Intercalibration of Satellite and Ground-Based Measurements of CO2 Content at the NDACC St. Petersburg Station, J. Applied Spectroscopy, 2020, Vol. 87, Issue 5, pp. 888–892, DOI: 10.1007/s10812-020-01085-0.
  20. World Energy Outlook, International Energy Agency, 2008, 578 p.
  21. Wunch D., Toon G. C., Blavier J.-F. L., Washenfelder R. A., Notholt J., Connor B. J., Griffith D. W. T., Sherlock V., Wennberg P. O., The Total Carbon Column Observing Network, Philosophical Trans. Royal Society A, 2011, Vol. 369, pp. 2087–2112,