ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 46-56

Influence of dust aerosol on the results of atmospheric correction of remote sensing reflection of the Black and Mediterranean Seas from MODIS satellite data

A.S. Papkova 1 , E.B. Shybanov 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 01.12.2021
DOI: 10.21046/2070-7401-2021-18-6-46-56
One of the main problems of oceanography is validating satellite and field data, studying the influence of the atmospheric component on the performance of satellite algorithms. In current research, we consider the effect of dust aerosol on the results of calculating the remote sensing reflectance of the Black and Mediterranean Seas from measurements by the MODIS Aqua satellite. Eleven cases of dust transport were accompanied by dust-specific changes in optical characteristics, such as: aerosol optical thickness, aerosol particle size distribution, Angstrom parameter and single scattering albedo. During the analysis of dust episodes, 5 of which were over the Black Sea and 6 over the Mediterranean Sea, it was concluded that it was necessary to correct or create a new regional algorithm for the Black Sea. Since in the presence of dust aerosol, as a result of high aerosol optical depth (AOT), satellite algorithms significantly overestimate the reflection coefficient of seawater, which may be due to the fact that not all geophysical factors occurring in the Black Sea basin are taken into account. In the Mediterranean, this effect was not observed. The study examined the dust days without clouds, blooming or highlights for assessing the exact contribution of dust.
Keywords: atmospheric correction, dust aerosol, remote sensing reflectance, sea brightness, aerosol optical depth, Angstrom parameter, single scattering albedo, MODIS, AERONET
Full text


  1. Korchemkina E. N., Shybanov E. B., Lee M. E., Atmospheric Correction Improvement for the Remote Sensing of Black Sea Waters, Issledovanie Zemli iz kosmosa, 2009, Vol. 6, pp. 24–30 (in Russian).
  2. Papkova A. S., Papkov S. O., Shukalo D. M., CALIPSO stratification of atmospheric aerosols with environmental assessment of dust content over the Black Sea region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, pp. 234–242 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-234-242.
  3. Ahmad Z., Franz B. A., McClain C. R., Kwiatkowska E. J., Werdell J., Shettle E. P., Holben B. N., New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and Open Oceans, Applied Optics, 2010, Vol. 49, pp. 5545–5560.
  4. Anderson J., Wang J., Zeng J., Petrenko M., Leptoukh G. G., Ichoku C., Accuracy assessment of Aqua-MODIS aerosol optical depth over coastal regions: importance of quality flag and sea surface wind speed: preprint, Atmospheric Measurement Techniques Discussions, 2012, Vol. 5, pp. 5205–5243,
  5. Bailey S. W., Werdell P. J., A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sensing of Environment, 2006, Vol. 102, Issue 1–2, pp. 12–23,
  6. Gordon H. R., Wang M., Influence of oceanic whitecaps on atmospheric correction of SeaWiFS, Applied Optics, 1994, Vol. 33, pp. 7754–7763.
  7. Kahn R. A., Sayer A. M., Ahmad Z., Franz B. A., The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type, J. Atmospheric and Oceanic Technology, 2016, Vol. 33, pp. 1185–1209,
  8. Kalinskaya D. V., Papkova A. S., Effect of the absorbing aerosol on the value of the brightness spectral factor by AERONET data and MODIS satellite data over the Black Sea region, Proc. 25 th Intern. Symp. Atmospheric and Ocean Optics: Atmospheric Physics (SPIE), 2019, 112084R,
  9. Lee S., Meister G., MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration of Ocean Color Products, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 55, pp. 5214–5219,
  10. Mobley C., Werdell J., Franz B., Ahmad Z., Bailey S., Atmospheric Correction for Satellite Ocean Color Radiometry: NASA Technical Report NASA/TM–2016-217551, 2016, 85 p.,
  11. Omar A. H., Winker D., Vaughan M., Hu Y., Trepte C., Ferrare R., Lee P., Hostetler C., Kittaka C., Rogers R., Kuehn R., The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm, J. Atmospheric and Oceanic Technology, 2009, Vol. 26, pp. 1994–2014,
  12. Papkova A., Papkov S., Shukalo D., Prediction of the Atmospheric Dustiness over the Black Sea Region Using the WRF-Chem Model, Fluids, 2021, Vol. 6, p. 201,
  13. Schoeberl M., Newman P., A multiple-level trajectory analysis of vortex filaments, J. Geophysical Research, 1995, Vol. 25, pp. 801–816.
  14. Shi C., Nakajima T., Simultaneous determination of aerosol optical thickness and water-leaving radiance from multispectral measurements in coastal waters, Atmospheric Chemistry and Physics, 2018, Vol. 18, pp. 3865–3884,
  15. Stefan S., Voinea S., GaIorga G., Study of the aerosol optical characteristics over the Romanian Black Sea Coast using AERONET data, Atmospheric Pollution Research, 2020, Vol. 11, pp. 1165–1178,
  16. Suetin V. S., Korolev S. N., Estimating Specific Features of the Optical Propertiy Variability in the Black Sea Waters Using the Data of SeaWiFS and MODIS Satellite Instruments, Physical Oceanography, 2018, Vol. 25(4), pp. 330–340, DOI: 10.22449/1573-160X-2018-4-330-340.
  17. Suslin V., Slabakova V., Kalinskaya D., Pryakhina S., Golovko N., Optical Features of the Black Sea Aerosol and the Sea Water Upper Layer Based on In Situ and Satellite Measurements, Physical Oceanography, 2016, Vol. 1, pp. 20–32, DOI: 10.22449/0233-7584-2016-1-20-32.
  18. Zibordi G., Mélin F., Berthon J.-F., Holben B., Slutsker I., Giles D., D’Alimonte D., Vandemark D., Feng H., Schuster G., Fabbri B. E., Kaitala S., Seppälä J., AERONET-OC: A Network for the Validation of Ocean Color Primary Products, Atmospheric and Oceanic Technology, 2009, Vol. 2, pp. 1634–1651,