ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 214-221

On the formation of an isolated lens of a river runoff by a whirlpool in the Gorky Reservoir

I.A. Kapustin 1, 2 , S.A. Ermakov 1, 3 , M.V. Smirnova 3, 1 , D.V. Vostryakova 1, 2 , A.A. Molkov 1, 3 , E.Yu. Cheban 3 , G.V. Leshchev 1, 2 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
3 Volga State University of Water Transport, Nizhny Novgorod, Russia
Accepted: 02.12.2021
DOI: 10.21046/2070-7401-2021-18-6-214-221
The structure in the water area of the Gorky Reservoir is highly variable and contains a main channel flow and large eddy formation, characterized in the literature as whirlpools. The formation of the whirlpools is mainly determined by wind conditions, uneven runoff through the hydroelectric power plants and bathymetry, and the phenomenon was investigated in a number of experimental studies. An isolated “lens” formed by the water mass of a river runoff and located in the circulation area in the floodplain part of a reservoir was observed for the first time due to hydrophysical and hydrochemical observations in the Gorky Reservoir. The lens formation mechanism associated with the capture of a river plume by a whirlpool under conditions of variable water discharge through the hydroelectric power plant and the operation of sluices, and leading to inhibition of the river runoff is proposed. The lens is characterized by lower values of the electrical conductivity of water in comparison with the surrounding waters of the reservoir. During the survey of the nearest tributaries, a water source with similar characteristics was found. It is shown that the water mass of the river plume captured by the circulation current can move along the reservoir over long distances (6 km or more) from the river mouth, remaining practically unmixed with the surrounding reservoir water.
Keywords: Gorky Reservoir, currents, water circulation, river outflow, tributaries, hydrochemical indicators
Full text

References:

  1. Butorin N. V., Gidrologicheskie protsessy i dinamika vodnykh mass v vodokhranilishchakh Volzhskogo kaskada (Hydrological processes and water mass dynamics in the Volga cascade reservoirs), Leningrad: Nauka, 1969, 322 p. (in Russian).
  2. Vostryakova D. V., Kapustin I. A., Molkov A. A., Ermakov S. A., Field studies of riverbed and wind flows characteristics in the Southern part of the Gorky Reservoir, Vestnik Volzhskoi gosudarstvennoi akademii vodnogo transporta, 2019, No. 61, pp. 11–18 (in Russian).
  3. Grechushnikova M. G., Repina I. A., Stepanenko V. M., Kazantsev V. S., Artamonov A. Yu., Varentsov M. I., Lomova D. V., Molkov A. A., Kapustin I. A., Spatio-temporal change of methane distribution and emission in reservoirs with different water residence coefficient, Izvestiya Russkogo geograficheskogo obshchestva, 2018, Vol. 150, No. 5, pp. 14–33 (in Russian), DOI: https://doi.org/10.7868/S086960711805002X.
  4. Ermakov S. A., Kapustin I. A., Lazareva T. N., Sergievskaya I. A., Andriyanova N. V., On the Possibilities of Radar Probing of Eutrophication Zones in Water Reservoirs, Izvestiya. Atmospheric and Oceanic Physics, 2013, Vol. 49, No. 3, pp. 307–314, DOI: 10.1134/S0001433813030055.
  5. Ermakov S. A., Kupaev A. V., Kapustin I. A., Molkov A. A., Sergievskaya I. A., Shomina O. V. (2016a), Experiments on remote sensing of organic films using multi frequency microwave radar, Vestnik Volzhskoi gosudarstvennoi akademii vodnogo transporta, 2016, No. 48, pp. 111–121 (in Russian).
  6. Ermakov S. A., Lavrova O. Yu., Kapustin I. A., Makarov E. V., Sergievskaya I. A. (2016b), Investigation of geometry of film slicks on the sea surface from satellite radar observations, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 97–105 (in Russian), DOI: 10.21046/2070-7401-2016-13-3-97-105.
  7. Ermakov S. A., Ermoshkin A. V., Kapustin I. A., On the effect of film slick compression, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 288–294 (in Russian), DOI: 10.21046/2070-7401-2017-14-3-288-294.
  8. Ermoshkin A. V., Kapustin I. A., Investigation of surfactant spreading over the surface of internal fresh-water reservoir using marine navigation radar, Sovremennye problem distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 136–142 (in Russian).
  9. Kapustin I. A., Molkov A. A., Structure of currents and depth in the lake part of the Gorky Reservoir, Russian Meteorology and Hydrology, 2019, No. 7, pp. 110–117 (in Russian).
  10. Kapustin I. A., Vostryakova D. V., Molkov A. A., Danilicheva O. A., Leshchev G. V., Ermakov S. A., Field observations of convergent currents in the near-surface layer of water using foam patterns in quasi-synchronous satellite optical images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 188–196 (in Russian), DOI: 10.21046/2070-7401-2021-18-1-188-196.
  11. Molkov A. A., Kalinskaya D. V., Kapustin I. A., Korchemkina E. N., Osokina V. A., Pelevin V. V., About the perspectives of remote assessment of hydrobiooptic water parameters of internal fresh water resources according results of expeditions on Gorkovsky water reservoir in 2016, Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon morya, 2017, No. 2, pp. 59–67 (in Russian).
  12. Molkov A. A., Kapustin I. A., Ermakov S. A., Sergievskaya I. A., Shomina O. V., Lazareva T. N., Danilicheva O. A., Leshchev G. V. (2019a), Gidrofizicheskaya laboratoriya IPF RAN “Geofizik” kak effektivnyi instrument limnologicheskogo monitoringa (Hydrophysical laboratory of IAP RAS “Geophysicist” as an effective tool for limnological monitoring), Nauchnye problemy ozdorovleniya rossiiskikh rek i puti ikh resheniya, Proc. Conf., 8–14 Sept., 2019, Nizhny Novgorod, 2019, pp. 214–218 (in Russian).
  13. Molkov A. A., Korchemkina E. N., Leshchev G. V., Danilicheva O. A., Kapustin I. A. (2019b), On the influence of cyanobacteria, surface roughness, and bottom radiance on the remote sensing reflectance of the Gorky Reservoir, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 203–212 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-203-212.
  14. Edelshtein K. K., Water masses in the lakeside part of the Gorki Reservoir, In: Dinamika vodnykh mass vodokhranilishch, Moscow; Leningrad: “Nauka”, 1965, pp. 29–38 (in Russian).
  15. Ekologicheskie problemy verkhnei Volgi (Environmental problems of the upper Volga), A. I. Kopylov (ed.), Yaroslavl: Izd. YaGTU, 2001, 427 p. (in Russian).
  16. Grishin M. Y., Lednev V. N., Pershin S. M., Bunkin A. F., Kobylyanskiy V. V., Ermakov S. A., Kapustin I. A., Molkov A. A., Laser remote sensing of an algal bloom in a freshwater reservoir, Laser Physics, 2016, Vol. 26, No. 12, 125601, DOI: 10.1088/1054-660X/26/12/125601.
  17. Smirnova M. V., Kapustin I. A., Ermoshkin A. V., Investigation of the possibility of remote detection of gas outlets in the sea using X-band radar, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 6, pp. 116–121, DOI: 10.21046/2070-7401-2020-17-6-116-121.