ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 277-291

Climatic changes in hydrometeorological parameters of the Caspian Sea (1980–2020)

A.I. Ginzburg 1, 2 , A.G. Kostianoy 1, 3, 4 , I.V. Serykh 1, 3 , S.A. Lebedev 3, 5, 6 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Space Research Institute RAS, Moscow, Russia
3 Geophysical Center RAS, Moscow, Russia
4 Moscow Witte University, Moscow, Russia
5 Maykop State Technological University, Maykop, Russia
6 National Research University of Electronic Technology, Zelenograd, Moscow, Russia
Accepted: 15.09.2021
DOI: 10.21046/2070-7401-2021-18-5-277-291
Reanalyses and remote sensing data of the Earth, as well as information from well-known publications of recent years, were used to study interannual changes and assess linear trends in hydrometeorological parameters of the Caspian Sea (without the Kara-Bogaz-Gol Bay): near-surface air temperature (SAT), sea surface temperature (SST), ice cover and level — in the period from 1980/1982 to 2020. In the 2000s, in comparison with the 1980s and 1990s, the maximum summer and minimum winter mean monthly values of SAT and SST increased, the number of mild winters increased. Trend of SAT of the Caspian region in the period 1980–2020 was +0.030 °C /year, the trends of the average annual SST in 1982–2020 in the North, Middle, South Caspian and in the sea as a whole were +0.026, +0.042, +0.034 and +0.035 °C/year, respectively. The greatest warming of waters took place in the western part of the Middle Caspian, the least one was in the northeast of the North Caspian and along the shelf zone of Turkmenistan. Decrease in trends in SAT and SST in the period from 1980/1982 to 2020 in comparison with the previous period (from 1980–1982 until about 2010) and the absence of an increase in the average annual SST values after 2010 indicate a slowdown in the warming of the Caspian Sea in the second decade of the 2000s. Trends in the monthly mean and average for the cold half-year (November – April) ice concentration in the North Caspian in 1980–2020 turned out to be negative (–0.8 and –1.24 %/10 years, respectively). Sea level after 2005, with the exception of a brief stabilization in 2015–2017, continues to fall. Average rate of level fall in the 28-year period 1993–2020 was –5.37±1.24 cm/year. By the end of 2020, it reached a mark of –28.5 m by the Baltic System of Heights, and only 0.5 m separates it from the 1977 minimum.
Keywords: Caspian Sea, sea level, air temperature, sea surface temperature, ice cover, interannual variability, global warming
Full text

References:

  1. Bukharitsin P. I., Andreev A. N., Rhythms of solar activity and expected extreme climatic events in the North Caspian region for the period 2007–2017, Ekstremal’nye gidrologicheskie sobytiya v Aralo-Kaspiiskom regione. Trudy Mezhdunarodnoi konferentsii (Proc. Conf. “Extreme geological events in the Aral — Caspian region”, 19–20 Oct., 2006, Moscow, 2006, pp. 137–143 (in Russian).
  2. Vodnyi balans i kolebaniya urovnya Kaspiyskogo morya. Modelirovanie i prognoz (Water balance and fluctuations in the level of the Caspian Sea. Modeling and forecasting), E. S. Nesterov (ed.), Moscow: Triada Ltd, 2016, 378 p. (in Russian).
  3. Gidrometeorologiya i gidrokhimiya morei. Tom 6. Kaspiiskoe more. Vyp. 1. Gidrometeorologicheskie usloviya (The Sea project. Hydrometeorology and hydrochemistry of the seas. Vol. 6. The Caspian Sea. Issue 1. Hydrometeorological conditions), Terziev F. S. (ed.), Saint Petersburg: Gidrometeoizdat, 1992, 358 p. (in Russian).
  4. Ginzburg A. I., Kostianoy A. G., Tendencies of changes in hydrometeorological parameters of the Caspian Sea in modern period (1990s –2017), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 195–207 (in Russian), DOI: 10.21046/2070-7401-2018-15-7-195-207.
  5. Ginzburg A. I., Kostianoi A. G., Sheremet N. A., Seasonal and interannual variability of the Caspian Sea surface temperature, Oceanology, 2004, Vol. 44, No. 5, pp. 605–618.
  6. Ginzburg A. I., Kostianoy A. G., Sheremet N. A., Long-term variability of the Caspian Sea surface temperature (1982–2009), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 262–269 (in Russian).
  7. Ginzburg A. I., Kostianoy A. G., Serykh I. V., Lebedev S. A., Climatic changes in hydrometeorological parameters of the Black and Azov seas (1980–2020), Okeanologiya, 2021, Vol. 61, No. 6, pp. 1–13 (in Russian), DOI: 10.31857/S003015742106006X (in print).
  8. Ivkina N., Naurozbaeva Zh., Klove B., The impact of changing climatic conditions on the ice regime of the Caspian Sea, Tsentralnoaziatskii zhurnal issledovanii vody, 2017, Vol. 3, No. 2, pp. 15–29 (in Russian).
  9. Kazmin A. S., Long-term variability of hydrometeorological parameters in the Caspian Sea. Part 1: data description, Okeanologicheskie issledovaniya, 2019, Vol. 47, No. 5, pp. 65–73 (in Russian), DOI: 10.29006/1564-2291.JOR-2019.47(5).5.
  10. Kosarev A. N., Gidrologiya Kaspiiskogo i Aral’skogo morei (Hydrology of the Caspian and Aral Seas), Moscow: Izd. MGU, 1975, 272 p. (in Russian).
  11. Kostianoy A. G., Ginzburg A. I., Lebedev S. A., Sheremet N. A., The Southern seas of Russia, In: Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (The Second assessment report of Roshydromet on climate change and its consequences on the territory of the Russian Federation), V. M. Kattsov, S. M. Semenov (eds.), Moscow: IGKE Rosgidrometa i RAN, 2014, pp. 644–683 (in Russian).
  12. Lavrova O. Yu., Kostianoy A. G., Lebedev S. A., Mityagina M. I., Ginzburg A. I., Sheremet N. A., Kompleksnyi sputnikovyi monitoring morei Rossii (Complex Satellite Monitoring of Russian Seas), Moscow: IKI RAN, 2011, 470 p. (in Russian).
  13. Lebedev S. A., Kostianoy A. G., Sputnikovaya al’timetriya Kaspiiskogo morya (Satellite altimetry of the Caspian Sea), Moscow: Izdatel’skii tsentr “More” Mezhdunarodnogo instituta okeana, 2005, 366 p.
  14. Lebedev S. A., Kostianoy A. G., Changes in the level and water dynamics from satellite altimetry data, In: Sistema Kaspiiskogo morya (The Caspian Sea system), A. P. Lisitsin (ed.), Moscow: Nauchnyi mir, 2016, pp. 13–41 (in Russian).
  15. Lobanov V. A., Naurozbayeva Zh. K., Caspian seas ice thickness possible changes in the current century, Gidrometeorologiya i ekologiya, 2021, No. 62, pp. 75–95 (in Russian), DOI: 10.33933/2074-2762-2021-62-75-95.
  16. Malinin V. N., Long-term forecasting of Caspian Sea level, Izvestiya Rossiiskoi akademii nauk, Seriya geograficheskaya, 2009, No. 6, pp. 7–16 (in Russian).
  17. Panin G. N., Vyruchalkina T. Yu., Solomonova I. V., Climatic changes in the Arctic, North Atlantic, the Caspian Sea region, and their relationship, Fundamental’naya i prikladnaya klimatologiya, 2015, Vol. 1, pp. 183–210 (in Russian).
  18. Serykh I. V., Kostianoy A. G., The links of climate change in the Caspian Sea to the Atlantic and Pacific oceans, Russian Meteorology and Hydrology, 2020, Vol. 45, No. 6, pp. 430–437, DOI: 10.3103/S1068373920060060.
  19. Arpe K., Leroy S. A. G., Lakijani H., Khan V., Impact of the European Russia drought in 2010 on the Caspian Sea level, Hydrology and Earth System Sciences, 2012, Vol. 16, pp. 19–27, DOI: 10.5194/hess-16-19-2012.
  20. Caspian Sea. State of environment 2019, A. Krutov (ed.), Interim Secretariat of the Framework Convention for the Protection of the Marine Environment of the Caspian Sea (Tehran Convention), Geneva; Arendal: Tehran Convention Secretariat and GRID-Arendal, 2020, 134 p., available at: https://tehranconvention.org/system/files/tcis/soecaspian2019_eng_hires.pdf.
  21. Chen J. L., Pekker T., Wilson C. R., Tapley B. D., Kostianoy A. G., Cretaux J.-F., Safarov E. S., Long-term Caspian Sea level change, Geophysical Research Letters, 2017, Vol. 44, pp. 6993–7001, DOI: 10.1002/2017GL073958.
  22. Copernicus Marine Environment Monitoring Services: Global Ocean Sea Ice Concentration Time Series REPROCESSED (OSI-SAF), E. U. Copernicus Marine Service Information, 2021, available at: https://resources.marine.copernicus.eu/product-detail/SEAICE_GLO_SEAICE_L4_REP_OBSERVATIONS_011_009.
  23. Gelaro R., McCarty W., Suárez M. J., Todling R., Molod A., Takacs L., Randles C. A., Darmenov A., Bosilovich M. G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A. M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J. E., Partyka G., Pawson S., Putman W., Rieneker M., Schubert S. D. Sienkiewicz M., Zhao B., The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2), J. Climate, 2017, Vol. 30(14), pp. 5419–5454, DOI: 10.1175/JCLI-D-16-0758.1.
  24. Guilyardi E., Lescarmontier L., Matthews R., Morata N., Rocha M., Schlüpmann J., Tricoire M., Wilgenbus D., The Ocean and Cryosphere in a Changing Climate. Summary for teachers based on the IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC), 2020, 36 p., available at: https://www.oce.global/sites/default/files/2020-04/OCE-RAP_SROCC-EN-10-WEB.pdf.
  25. Kazmin A. S., Multidecadal variability of the hydrometeorological parameters in the Caspian Sea, Estuarine, Coastal and Shelf Science, 2021, Vol. 250, https://doi.org/10.1016/j.ecss.2020.107150.
  26. Kosarev A. N., Physico-Geographical Conditions of the Caspian Sea, In: The Caspian Sea Environment. The Handbook of Environmental Chemistry, Kostianoy A., Kosarev A. (eds.), Springer, 2005, Vol. 5, Part P, pp. 5–31, https://doi.org/10.1007/698_5_002.
  27. Kostianoy A. G., Ginzburg A. I., Lavrova O. Yu., Lebedev S. A., Mityagina M. I., Sheremet N. A., Soloviev D. M., Comprehensive Satellite Monitoring of Caspian Sea Conditions, In: Remote Sensing of the Asian Seas, V. Barale, M. Gade (eds.), Cham: Springer, 2019, pp. 505–521, DOI: 10.1007/978-3-319-94067-0_28.
  28. Lavrova O. Yu., Kostianoy A. G., Mityagina M. I., Strochkov A. Ya., Bocharova T. Yu., Remote sensing of sea ice in the Caspian Sea, Proc. SPIE, 2019, Vol. 11150, Remote Sensing of the Ocean, Sea ice, Coastal Waters, and Large Water Regions, Art. No. 1115000Q, https://doi.org/10.1117/12.2532136.
  29. Lebedev S., Climatic variability of water circulation in the Caspian Sea based on satellite altimetry data, Intern. J. Remote Sensing, 2018, pp. 4343–4359, DOI: 10.1080/01431161.2018.1441567.
  30. Matishov G. G., Dzhenyuk S. L., Moiseev D. V., Zhichkin A. P., Pronounced anomalies of air, water, ice conditions in the Barents and Kara Seas, and the Sea of Azov, Oceanologia, 2014, Vol. 56(3), pp. 445–460, DOI: 10.5697/oc.56-3.445.
  31. Nandini-Weiss S. D., Prange M., Arpe K., Merkel U., Schulz M., Past and future impact of the winter North Atlantic Oscillation in the Caspian Sea catchment area, Intern. J. Climatology, 2020, Vol. 40, pp. 2717–2731, https://doi.org/10.1002/joc.6362.
  32. Prange M., Wilke T., Wesselingh F. P., The other side of sea level change, Communications Earth and Environment, 2020, Vol. 1, Art. No. 69, 4 p., https://doi.org/10.1038/s43247-020-00075-6.
  33. Reynolds R. W., Smith T. M., Liu C., Chelton D. B., Casey K. S., Schlax M. G., Daily high-resolution-blended analyses for sea surface temperature, J. Climate, 2007, Vol. 20, pp. 5473–5496.